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1. Introduction

In short, given a commutative field theory defined in the Euclidean space RD by the action

S =
∫

dDx L(φ(x)), the corresponding noncommutative theory is implemented replacing

the products of the fields φ(x) by the so-called star-products introduced according to the

rule1

(f1 ⋆ f2) (x) ≡ exp

(

−
i

2
θµν∂

y
µ∂z

ν

)

f1(y) f2(z)

∣

∣

∣

∣

∣

y=z=x

, (1.1)

where the parameter of noncommutativity θµν , entering the commutation relation

[xµ, xν ] = −iθµν satisfied by D noncommuting coordinates, is real and antisymmetric.

In particular, the action of the standard D−dimensional U(N) Yang-Mills theory is super-

seded by

S =
1

4g2

∫

dDx tr
(

F2
µν(x)

)

; Fµν = ∂µAν + ∂νAµ − i(Aµ ⋆ Aν −Aν ⋆ Aµ) , (1.2)

where Aµ ≡ Aa
µta with tr(tatb) = δab, and θ21 = −θ12 = θ in the D = 2 case in question.

The noncommutative two-dimensional Uθ(N) system (1.2) provides the simplest ex-

ample of the noncommutative gauge theory. As well as in the θ = 0 case, investigation

of non-perturbative effects in a low-dimensional model is expected to prepare us for the

analysis of a more complicated four-dimensional quantum dynamics. An incomplete list of

papers, devoted to this direction of research, is presented in references [3]–[23].

The aim of the present work is to extend the perturbative analysis of our previous

publication [14] and examine, non-perturbatively in the coupling constant g2, the two

1For a review see [1, 2] and references therein.
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alternative expansions of the Wilson loop-average < W (C) >Uθ(N) in the D = 2 Uθ(N)

theory on a plane. The first one is the 1/θ series

< W (C) >Uθ(N)=

∞
∑

k=0

θ−k < W(C) >
(k)
N (1.3)

that is to be compared with the more familiar ’t Hooft 1/N topological expansion

< W (C) >Uθ(N)=
∞

∑

G=0

N−2G < W (C) >
(G)
Uθ(N) , (1.4)

where G can be identified with the genus of the auxiliary surface canonically associated

with any given diagram of the weak-coupling series of the N−independent quantity <

W (C) >
(G)
Uθ(N)=< W (C) >

(G)
Uθ(1). Also, the contour C is always restricted to be closed.

The θ → ∞ limit of the Uθ(N) theory is known [24] to retain the same set of the

planar diagrams (described by the same amplitudes) as the N → ∞ limit does so that the

leading terms of both of the above expansions coincide,

< W (C) >
(0)
Uθ(N)=< W(C) >

(0)
N , (1.5)

provided the appropriate identification of the coupling constants. As the G = 0 term of

eq. (1.4) is θ−independent, it therefore reduces to the corresponding average in the com-

mutative variant of the gauge theory. In consequence, the leading term of the series (1.3)

reduces,

< W(C) >
(0)
N =< W (C) >

(0)
U(N)

, < W(¤) >
(0)
N = exp[−σA(¤)] , (1.6)

to G = 0 term of the θ = 0 expansion (1.4) of the average < W (C) >U(N) in the ordinary

commutative U(N) gauge theory. In particular, it fits in the simple Nambu-Goto pattern

for an arbitrary non-self-intersecting contour C.

In this paper, for an arbitrary rectangular contour C = ¤, we evaluate the next-to-

leading term < W (C) >
(1)
Uθ(1) /N2 of the topological expansion (1.4) and argue that its

large θ asymptote exactly reproduces,

< W(C) >
(2)
N =

1

N2
lim

θ→∞
θ2 < W (C) >

(1)
Uθ(1) , (1.7)

the k = 2 term of the 1/θ series (1.3) (while < W(C) >
(1)
N = 0). The proof of the re-

lation (1.7) will be presented in a separate publication [25]. As for the computation of

< W(C) >
(2)
N , for this purpose we perform a resummation of the genus-one diagrams

for a generic C = ¤, that is facilitated by the choice of the axial gauge where, at the

level of the D = 2 action (1.2), only tree-graphs (without self-interaction vertices) are

left. Nevertheless, the problem remains to be nontrivial: due to the noncommutative

implementation [26]–[35] of the Wilson loop, an infinite number of different connected

G = 1 diagrams contributes to the average < W (C) >Uθ(N) even in the case of a non-

self-intersecting contour C that is in contradistinction with the commutative case, where

– 3 –
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< W (¤) >U(N)=< W (¤) >
(0)
U(N). To deal with this problem, we propose a specific method

of resummation.

Application of the method allows to unambiguously split the whole set of the relevant

perturbative G = 1 diagrams into the three subsets. Being parameterized by the two

integer numbers r and v with 0 ≤ r ≤ v ≤ 1, each subset can be obtained starting with the

corresponding protograph (with 2 + r − v lines) and then dressing it through the addition

of extra lines in compliance with certain algorithm. For a rectangle C = ¤, it yields an

integral representation of the G = 1 term of the 1/N expansion in the form

< W (¤) >
(1)
Uθ(1) =

1

(2πσθ)2

∑

0≤r≤v≤1

hrvZrv(Ā, θ̄−1) , (1.8)

where Zrv(Ā, θ̄−1) denotes the effective amplitude which, after multiplication by the factor

hrv = 2 + r − v separated for a later convenience, accumulates the entire rv−subset of

the perturbative amplitudes. Besides a dependence on θ̄ = σθ, Zrv(·) depends only on the

dimensionless area Ā = σRT of C = ¤ rather than separately on the lengths T and R of

the temporal and spatial sides of ¤.

Correspondingly, in the large θ limit,

θ >> A(C) , (1.9)

the N = 1 relation (1.7) can be rewritten as

< W(¤) >
(2)
1 =

1

(2πσ)2

∑

0≤r≤v≤1

hrvZrv(Ā, 0) , (1.10)

where Zrv(Ā, 0) is obtained from Zrv(Ā, θ̄−1) (which, as a multiple integral, is continuous in

θ̄−1 in a vicinity of θ̄−1 = 0) simply replacing2 θ̄−1 by zero in the corresponding integrand.

Then, performing the Laplace transformation with respect to Ā, the image Z̃rv(β, 0) of the

large θ asymptote Zrv(Ā, 0) assumes the concise form

Z̃rv(β, 0) =
1

(β + 1)2

+∞
∫

−∞

dζ̄dη̄
Krv(ζ̄ , η̄)

(β + |1 − ζ̄|)hrv−1 (β + |1 + η̄|) (β + |1 + η̄ − ζ̄|)
, (1.11)

where

Krv(ζ̄ , η̄) =

0
∑

e3=−r

v−r
∑

e1=−1

1
∑

e2=v

(−1)v+
P3

k=1 ek 2(v−r)(1−|e1 |)|e1 + ζ̄| |e2 + η̄|1−v |e3 + ζ̄|r . (1.12)

The integral representation (1.11) is the main result of the paper.

Building on the latter representation, one concludes that the pattern of the θ 6= 0

expansion (1.4) shows, especially in the limit (1.9), a number of features which are in sharp

2The peculiarity of this replacement is that it can not be applied directly to the perturbative amplitudes

describing individual Feynman diagrams. It matches the observation [14] that the large θ asymptote of the

leading perturbative contribution to < W (C) >
(1)
Uθ(1) scales as θ0 rather than as θ−2. In turn, it implies a

non-triviality of the relation (1.7).
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contrast with the 1/N expansion of the average in the θ = 0 case. Indeed, in the latter case,

the Nambu-Goto pattern (1.6) provides the exact result < W (¤) >U(N)=< W (¤) >
(0)
U(N)

for an arbitrary non-self-intersecting loop C, and the corresponding subleading terms are

vanishing: < W (C) >
(G)
U(N)= 0 for G ≥ 1. Furthermore, for self-intersecting contours

C, nonvanishing subleading G ≥ 1 terms < W (C) >
(G)
U(N) all possess [36] the area-law

asymptote like in eq. (1.6) in the limit Ā → ∞.

When θ 6= 0, even for a rectangular loop C, the pattern of < W (C) >Uθ(N) is charac-

terized by an infinite 1/N−series, each G ≥ 1 term of which nontrivially depends both on

θ̄ and on Ā(C). In addition, we present simple arguments that, in contradistinction with

eq. (1.6), the asymptote (1.10) of the next-to-leading term exhibits a power-like (rather

than exponential) decay for areas σ−1 << A(¤) << θ much larger than the string tension

σ. This asymptote is evaluated in [25] with the result

1

N2
< W (¤) >

(1)
Uθ(1) −→

4

π2 (σθN)2
ln(σA)

σA
, σθ, σA −→ ∞ , (1.13)

that can be traced back to the (infinite, in the limit θ → ∞) nonlocality of the star-

product (1.1) emphasized in the discussion [37] of the UV/IR mixing. Due to the generality

of the reasoning, all the subleading G ≥ 1 coefficients < W (C) >
(G)
Uθ(1) are as well expected

to show, irrespectively of the form of C, a power-like decay for σ−1 << A(C) << θ. In

particular, it precludes a straightforward stringy interpretation of the subleading terms of

the expansion (1.4) in the spirit of Gross-Taylor proposal [38] for the θ = 0 commutative

D = 2 gauge theory.

In section 2, we put forward a concise form (2.10) of the perturbative 2n−point func-

tions, the loop-average < W (C) >Uθ(1) is composed of in the D = 2 U(1) theory (1.2). In

section 3, it is sketched how these functions are modified under the two auxiliary (genus-

preserving) deformations of a given diagram to be used for the derivation of the decompo-

sition (1.8). To put the deformations into action, we also introduce a finite number of the

judiciously selected elementary genus-one graphs so that any remaining non-elementary

G = 1 perturbative diagram can be obtained through appropriate multiple application of

the above deformations to one of thus selected elementary graphs. In section 4, we propose

the γjrv−parameterization of the latter graphs and discuss how they can be collected into

certain subsets associated with the corresponding protographs. In turn, being parame-

terized by the rv−assignment, the protographs are obtained from the elementary graphs

through elimination of some of their lines.

When a particular elementary diagram with a given γjrv−assignment is dressed by all

its admissible deformations, the corresponding perturbative 2n−point function is replaced

by the effective one endowed with the same assignment. As it is shown in section 5, the

replacement is implemented in such a way that certain n−v propagators of the elementary

diagram are superseded by their effective counterparts (5.6). The integral representation

of the effective 2n−point functions, is completed in section 6.

In section 7, we express the G = 1 term < W (¤) >
(1)
Uθ(1) of the expansion (1.4) as a

superposition of the effective amplitudes (7.1) that are obtained when the arguments of the

– 5 –
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effective 2n−point functions are integrated over the rectangle C = ¤. The effective am-

plitudes can be collected into the three rv−superpositions Zrv(Ā, θ̄−1) associated with the

corresponding protographs parameterizing the decomposition (1.8). The explicit expres-

sion (7.7) for Zrv(·) is then derived. It is observed that, for a fixed rv−specification, this

expression can be deduced directly through the appropriate dressing of the rv−protograph.

The derivation of the large θ representation (1.11) is sketched in section 8. Conclusions, a

brief discussion of the perspectives, and implications for D = 3, 4 gauge theory (1.2) are

sketched in section 9. Finally, the appendices contain technical details used in the main

text.

2. Generalities of the perturbative expansion

Building on the integral representation of the Uθ(1) average, we begin with a sketch of the

derivation of the relevant perturbative 2n−point functions.

2.1 Average of the noncommutative Wilson loop

To this aim, consider the perturbative expansion of the average of the noncommutative

Wilson loop [26]

W (C) = Pe
i

H

C
dxµ(s)Aµ(x(s))

⋆ . (2.1)

in the Uθ(N) noncommutative gauge theory on the 2D plane R
2. For this purpose, it is

sufficient to use the path-integral representation [14] of the Uθ(1) average

< W (C) >Uθ(1)=

〈

exp



−
1

2

∮

C

dxµ(s)

∮

C

dxν(s
′)Dµν(x(s) − x(s′) + ξ(s) − ξ(s′))





〉

ξ(s̃)

,

(2.2)

as it follows from the N−independence of the quantities < W (C) >
(G)
Uθ(N) which are, there-

fore, replaced by < W (C) >
(G)
Uθ(1) in eq. (1.4). In eq. (2.2), Dµν(z) is the standard D = 2

photon’s propagator in the axial gauge A1 = 0,

Dµν(z) =< Aµ(z)Aν(0) >U(1)= −
g2

2
δµ2δν2 |z1| δ(z2) , (2.3)

and the functional averaging over the auxiliary ξµ(s) field (parameterized by the proper

time s ∈ [0, 1] chosen to run clockwise starting with the left lower corner of C = ¤) is to

be performed according to the prescription
〈

B[ξ(s)]

〉

ξ(s̃)

=

∫

Dξµ(s) e
i
2
(θ−1)µν

R

dsds′ξµ(s)G−1(s,s′)ξν(s′) B[ξ(s)] . (2.4)

Here, Dξµ(s) denotes the standard flat measure so that < ξµ(s)ξν(s′) >= iθµνsign (s−s′)/2,

where, prior to the regularization, we are to identify G−1(s, s′) = δ̇(s − s′).

Let us also note that eq. (2.4) is based on the integral representation

exp

(

−
i

2
θµν∂

x
µ∂y

ν

)

f1(x) f2(y) =

∫

e2i(θ−1)µνξµ
1 ξν

2 f1(x + ξ1)f2(y + ξ2)

2
∏

j=1

d2ξµ
j

w(θ)
(2.5)

– 6 –
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of the star-product (1.1), where w(θ) = (π2|det θ|)1/2. In consequence, the noncommuta-

tive Wilson loop (2.1) itself can be represented as [27],

W (C) =

〈

exp



i

∮

C

dxµ(s)Aµ(x(s) + ξ(s))





〉

ξ(s̃)

. (2.6)

Finally, the coupling g2 of the Uθ(N) noncommutative gauge theory is related to the

string tension σ, entering eq. (1.6), by the formula

σ = g2
Uθ(N)N/2 . (2.7)

2.2 Perturbative θ-dependent 2n−point functions

Take any given nth order diagram of the weak-coupling expansion of the average (2.2) that,

being applied to the 1/N series (1.4) can be rewritten in the form

< W (C) >
(G)
Uθ(N)=

∞
∑

n=0

λ2n < W (C) >
(G,n)
Uθ(N) (2.8)

with λ = g2N . For a particular n ≥ 2G, < W (C) >
(G,n)
Uθ(N) is given by the multiple contour

integral of the ξ-average applied to the corresponding product of n ξ-dependent propagators

Dµν(yl + ξ(sl) − ξ(s′l)), where

yl = x(sl) − x(s′l) , (2.9)

with l = 1, 2, . . . , n, and yl = (y1
l , y

2
l ), while y1

l and y2
l are associated with the vertical

and horizontal axis respectively. Then, any diagram can be topologically visualized as the

collection of the oriented (according to the proper-time parameterization) lines so that the

qth propagator-line starts at a given point x(s′q) ∈ C and terminates at the corresponding

x(sq) ∈ C. When the ξ-averaging of the product is performed, the perturbative 2n−point

function can be rewritten [14] in the form

V
(n)
Uθ(1)(y1, . . . ,yn) = on

n
∏

1≤l<j

exp

(

i

2
Clj θ̆µν∂zl

µ ∂
zj
ν

)

D22(z1) D22(z2) . . . D22(zn)
∣

∣

∣

{zk=yk}
,

(2.10)

where3 on = (−1/2)n/n!, and the intersection matrix Clj = −Cjl, being defined alge-

braically as

Clj =
1

2

(

sign(sl − sj) + sign(s′l − s′j) − sign(sl − s′j) − sign(s′l − sj)
)

, (2.11)

3In the computation of any 2nth order perturbative diagram, the factor on disappears. The subfactor

2−n is exactly cancelled by the symmetry factor responsible for the interchange of two different end-points

of each of the n lines. By the same token, the subfactor factor 1/n! is precisely cancelled by the symmetry

factor corresponding to all possible permutations of the n different (non-oriented) lines. Finally, (−1)−n

is to be combined with the implicit factor (−1)−n that arises when one pulls the minus sign out of each

propagator (2.3) entering V
(n)
Uθ(1)(·).

– 7 –
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counts the number of times the lth oriented line crosses over the jth oriented line (and,

without loss of generality, we presume that sl ≥ s′l for ∀l). As for the relevant noncommu-

tative parameter θ̆µν , it is twice larger

θ̆µν = 2θµν , (2.12)

compared to the parameter θµν defining the original star-product (1.1). Being rewritten in

the momentum space, eq. (2.10) implies that, compared to the commutative case, a given

θ 6= 0 perturbative 2n−point function is assigned with the extra θ−dependent factor

〈

n
∏

k=1

eipk ·(ξ(sk)−ξ(s′
k
))

〉

ξ(s̃)

= exp



−i
∑

l<j

Clj θµν pµ
l pν

j



 . (2.13)

where the momentum pl is canonically conjugated to the lth coordinate (2.9). In turn, the

r.h. side of eq. (2.13) reproduces the existing formula [24, 37] obtained in the analysis of

the partition function in the noncommutative field-theories.

Finally, the pattern of eqs. (2.13) and (2.11) suggests the natural definition of

(dis)connected diagrams. Algebraically, a particular nth order graph is to be viewed as

disconnected in the case when the associated n × n matrix Clj assumes a block-diagonal

form Clj = ⊗kC
(k)
lkjk

, with
∑

k nk = n, so that the nonvanishing entries of Clj are reproduced

exclusively by smaller nk × nk matrices C
(k)
lkjk

, where nk < n for ∀k. Conversely, when a

nontrivial implementation of this decomposition of a particular Clj is impossible, the cor-

responding diagram is called connected. As the rank r[C] = 2G({yl}) of the matrix Cij

is known to be equal to the doubled genus G({yl}) of the diagram, one expects that the

order n of a connected genus G graph complies with the inequality n({yl}) ≥ 2G({yl}).

3. The two deformations and the irreducible diagrams

The aim of this section is to present the central elements of the exact resummation4 of

the weak-coupling series applied to the noncommutative Wilson loop average that, in turn,

leads to the decomposition (1.8) introducing the parameters r and v. For this purpose,

observe first that the complexity of the perturbative expansion of the considered average

roots in the complexity of the perturbative 2n−point functions (2.10) associated with the

connected graphs (of an arbitrary large order) discussed in the end of the previous section.

For a connected graph of order m ≥ 2G, the 2m−point function (2.10) can be expressed in

the simplest cases as an irreducible star-product f1 ⋆ f2 ⋆ . . . ⋆ fm of multiplicity m, where

the quantities fk(·) are composed of the propagators (2.3). (In general, the pattern of the

connected 2n−point function can be deduced according to the prescription discussed in

the beginning of subsection 3.3.) In particular, it can be shown that 2 ≤ m ≤ 3 for G = 1,

while eq. (2.10) for a generic G = 1 diagram can be represented in the form of an ordinary

product of a single mth order star-product (or its generalization in the sense of the latter

prescription) and a number of the propagators (2.3).

4The details of this resummation procedure will be published elsewhere.
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1a

1b

1c

1d

1e

Figure 1: Connected Ra ×Rb−irreducible n = 2 diagrams.

To put this representation into use, we introduce the two genus-preserving deforma-

tions of any given diagram which are called R−1
a − and R̄−1

b −deformations. Increasing the

order n of a G ≥ 1 graph by one, they relate the corresponding pairs of functions (2.10)

in a way that does not change the multiplicities of the irreducible star-products involved.

Correspondingly, with respect to the inverse Ra− and R̄b−deformations, one introduces

Ra ⊗ R̄b−irreducible Feynman diagrams.

The effectiveness of the construction is that nonvanishing functions (2.10) are asso-

ciated only with the finite number of the irreducible diagrams depicted5 in figures 1, 2,

7a, and 7e (which are postulated to fix the topology of the attachment of the lines’ end-

points to the upper and lower horizontal sides of C = ¤). Then, by construction, the

R̄−1
b −deformations does not change the number of connected components of a given irre-

ducible diagram and may be applied separately to each line of the diagram. In consequence,

the complete set of the connected genus-one diagrams can be generated applying all possi-

ble R̄−1
b −deformations to all m lines of these Ra ⊗ R̄b−irreducible diagrams. Given thus

obtained set, the subsequent application of the R−1
a −deformations reproduces all the re-

5Actually, the diagrams in the figures 2a and 2b are irrelevant for the analysis as well.
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2a

2b

2c

2d

2e

2g

2f

Figure 2: Connected Ra ×Rb−irreducible n = 3 diagrams.

maining disconnected G = 1 diagrams. In short, a composition of multiple R−1
a − and

R̄−1
b −deformations, associated with some lines of an irreducible graph, is denoted as a

R−1
a ⊗ R̄−1

b −deformation of this graph. Conversely, with any given a reducible graph, one

can associate the corresponding irreducible diagram.

In the end of the section, we also discuss a reason for a further refinement of the resum-

mation algorithm implemented via certain dressing of the lines of the so-called elementary

(rather than irreducible) diagrams. The advantage of the refined algorithm is that, for

any of the dressed lines of the a given elementary diagram, (in the relevant amplitude)

– 10 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
9

one merely replaces the perturbative propagator by a concise effective propagator to be

introduced in subsection 5.3. In this way, the entire set of the genus-one Feynman diagrams

(generated by the perturbative expansion of the average (2.2)) can be unambiguously de-

composed into a finite number of subsets parameterized by the corresponding elementary

graphs. In turn, each subset is described by the associated effective 2n−point function

that, therefore, accumulates the overall admissible R−1
a ⊗R̄−1

b −dressing of the elementary

G = 1 graph.

3.1 The R−1
a −deformations

After the R−1
a −deformation, a given elementary graph is modified by an addition of an

extra ith propagator-line that does not intersect6 any line in the original {k}-set of the

elementary diagram:

Cik = 0 , ∀k 6= i . (3.1)

Starting with a given 2n−point function V
(n)
Uθ(1)(·) and identifying i = n + 1, one readily

obtains that, modulo the numerical constant, the considered deformation of V
(n)
Uθ(1)(·) merely

multiplies it by the extra propagator,

V
(n+1)
Uθ(1) (y1, . . . ,yn,yn+1) = −

1

2(n + 1)
V

(n)
Uθ(1)(y1, . . . ,yn) D22(yn+1) . (3.2)

Correspondingly, one defines the inverse of the R−1
a −deformation as the Ra−deformation

which eliminates such an ith line of a (Ra−reducible) diagram that complies with eq. (3.1)

for some k. In the absence of such a line (for any k), the graph is called Ra−irreducible.

Note that any connected diagram is necessarily Ra−irreducible.

Concerning an m−fold application of the R−1
a −deformation, the corresponding gener-

alization of eq. (3.2) is routine: the single factor −D22(yn+1)/2(n + 1) is replaced by the

product
∏m

k=1(−1)D22(yn+k)/2(n + k). I.e., all of thus generated extra lines are assigned

(as well as in the θ = 0 commutative gauge theory) with the ordinary perturbative propa-

gator (2.3). For example, a generic non-elementary R−1
a −deformation of the graph in figure

1a is described by the diagram in figure 3a. In the latter figure the additional lines are

depicted by dotted straight lines. All these lines are necessarily vertical because the relative

position of their end-points is characterized, owing to the pattern (2.3) of the propagator,

by the vanishing relative times (associated with the horizontal 2−axis): y2
n+k = 0, ∀k ≥ 1.

More generally, the vertical dotted lines in figures 5, 6, 8, and 9 are also generated by

the admissible multiple R−1
a −deformations of the corresponding elementary graphs. Note

also that, for a given elementary diagram, in the figures the temporal coordinates of the

upper (or, equivalently, lower) end-points of the R−1
a −copies may span only the left- and

rightmost time-intervals separated on the horizontal side of the rectangular contour C in

the following way. While the leftmost interval is bounded from the right by the leftmost

end-point of the lines7 of the elementary diagram, the rightmost interval is bounded from

the left by the rightmost end-point of the diagram.

6The condition (3.1) refers to such implementation of the decomposition Clj = ⊗kC
(k)
lkjk

when, except for

a single factor C
(q)
lqjq

, all the remaining factors are one-dimensional.
7In each of the latter figures, the corresponding elementary diagram is depicted by solid lines.
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3b

3c

3d

3e

3a

Figure 3: Examples of the R−1
a

−deformations of the time-ordered protographs (represented by

solid lines) in the case when (a),(b) r = v = 0, (c) r = v − 1 = 0 and (d),(e) r = v = 1. Dotted

lines depict R−1
a

−inclusions.

Finally, by the same mechanism as in the θ = 0 case, the R−1
a −dressing of a given

connected graph results merely in the multiplication of the amplitude, associated with this

graph, by a factor (to be fixed in subsection 5.2).

3.2 The R̄−1
b −deformations

The R̄−1
b −deformation of a given kth line of a given elementary graph that introduces an

extra line, labeled by i, so that the following twofold condition is fulfilled. Let the remaining

lines of the latter graph are denoted as the {q}k−set with ∀q 6= k, i. To begin with, one

requires that the kth and the ith lines, being mutually non-intersecting (in the sense of

eq. (2.11)), intersect the {q}k−set in the topologically equivalent way (modulo possible

reversion of the orientation). e.g. the R̄−1
b −copies of the right and left solid horizontal

lines in figure 1a are depicted by dotted lines in figures 4b and 4c respectively. In general,

it can be formalized by the condition

Cik = 0 , Ciq = αik Ckq , ∀q 6= k, i , (3.3)
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4a

4b

4c

Figure 4: Examples of the R−1
b

−deformations of the Ra × Rb−irreducible diagram in figure 1a.

Dotted lines depict: (a) horizontal R−1
b

−copies of the right solid line of the diagram, (b) non-

horizontal R−1
b

−copies of this right line and (c) non-horizontal R−1
b

−copies of the left solid line.

where, depending on the choice of the relative orientation of the ith line, the q-independent

constant αik is equal to 1 or −1 (with α11 = 1) while αik = αki. Additionally, it is

convenient to impose that thus introduced extra line should not be horizontal, i.e., both its

end-points are not attached to the same horizontal side (along the 2−axis) of the rectangle

C. As for the inverse transformation, the R̄b−deformation deletes such an ith line of a

diagram that eq. (3.3) holds true for some k. Correspondingly, any line of a R̄b−irreducible

graph has no R̄−1
b −copies in the sense of the above twofold condition.

Next, identifying αnp ≡ α
(n)
21 with p = n + 1 (while αnn ≡ α

(n)
11 = 1), one obtains

that the R̄−1
b −deformation of a diagram, described by eq. (2.10), results in the diagram

described by the 2(n + 1)−point function

V
(n+1)
Uθ(1) (y1, . . . ,yn,yn+1) = on+1

n
∏

1≤l<j

e
i
2

Clj θ̆µν∂
zl
µ ∂

zj
ν D22(z1) . . . D22(zn−1) × (3.4)

×
[

D22(zn) D22((zn − yn)α
(n)
21 + yn+1)

] ∣

∣

∣

{zk=yk}
.

which is expressed through the original n × n intersection matrix Clj. In view of the

pattern (2.3) of the propagator, eq. (3.4) implies that

α
(n)
21 y2

n = y2
n+1 . (3.5)

In turn, it entails that the R̄−1
b −copy of a given line is characterized by the same modulus

of the relative time (fixed by the second component y2
l of the relative distance (2.9)) as the

line itself.

The multiple application of the R̄−1
b −deformations (3.3) to a kth line, introduces an

extra {l}k−set of the lines which, intersecting neither each other nor the kth line, fulfill the
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option of eq. (3.3) with Clq = α
(k)
l1 Ckq, ∀q 6= k, l (while α

(k)
11 = 1), where we have changed

the notations introducing α
(k)
l1 instead of αik. Then, generalizing the relation (3.5), the

corresponding implementations of the 2n−point function (2.10) enforce that

y2
k = α

(k)
l1 y2

k,l , ∀l = 2, . . . , nk , ∀k , (3.6)

where yk,l denotes the relative distance (2.9) corresponding to that R̄−1
b −copy of the kth

line (described by yk ≡ yk,1) which is endowed with the label l.

Let us also note another useful property8 of the R̄−1
b −deformations which enforces

eq. (3.6). When applied to an elementary G = 1 graph, the (multiple) R̄−1
b −deformations

result in diagrams described by vanishing 2n−point functions (2.10) unless they are con-

strained by a particular {α(r)}−assignment in the following sense. The quantity (2.10)

may be nonvanishing only when, for any given rth line of the elementary graph, all its

R̄−1
b −copies (if being present) are assigned with one and the same value of the parameter

α
(r)
l1 = α(r) , ∀l ≥ 2 , ∀r , (3.7)

where α
(r)
lk = ±1 enters the implementation of eq. (3.3) corresponding to the rth line.

Together with eq. (3.6), it guarantees the important property of any graph with a

nonvanishing amplitude:

y2
k = α(k)y2

k,l , ∀l = 2, . . . , nk , ∀k , (3.8)

i.e., all the R̄−1
b −copies of a given line of the associated irreducible diagram are charac-

terized by the same relative time. Diagrammatically, eq. (3.8) is implemented through the

convention that, for C = ¤, the latter copies are depicted by such straight dotted lines

which are mutually parallel. An example is provided by figures 4b and 4c where the dotted

lines depict the R̄−1
b −copies of respectively the right and the left solid lines representing

the Ra × R̄b−irreducible diagram in figure 1a.

These figures exemplify another general rule: given a R̄−1
b −dressing of a particular

irreducible diagram, in the corresponding figure the temporal coordinates of the upper (or

lower) end-points of the R̄−1
b −copies may span only such time-interval that is bounded by

the two specific end-points of this diagram: by a certain single end-point of the line, the

copies are associated with, and by that end-point of some of the remaining lines which

(in the sense of its temporal coordinate) is adjacent to the former end-point. E.g., in the

case of figure 4b, these are the left end-points of the right horizontal solid line (dressed by

R̄−1
b −deformations) and of the left horizontal solid line. A more detailed prescription will

be given in the next section.

3.2.1 Important topological selection-rule

The constraint (3.6) implies certain important selection-rule that underlies the considered

resummation algorithm which implements the dressing of the G = 1 Ra × R̄b−irreducible

8The proof of eq. (3.7), as well as of the selection-rule discussed in subsection 3.2.1, will be given in a

separate publication.
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diagrams. In particular, it is this rule which motivates the additional requirement that the

extra line, introduced in the process of dressing of a given irreducible diagram according

to eq. (3.3), is necessarily non-horizontal (in the sense formulated in the beginning of

subsection 3.2). In turn, it allows to select easily those Ra × R̄b−irreducible diagrams

which are endowed with nonvanishing 2n−point functions (2.10).

To briefly explain the point, let us first introduce the notion of the R−1
b −deformations.

The definition of this type of the deformation can be obtained from the one of the

R̄−1
b −deformation omitting the latter additional requirement imposed on the extra line.

Then, it is straightforward to verify that the Ra × R̄b−irreducible Feynman diagrams

of figures 1 and 2 represent all connected Rb−irreducible (i.e., Ra × Rb−irreducible)

G = 1 diagrams. Although any Rb−irreducible graph is evidently R̄b−irreducible as

well, the converse statement is not necessarily true. Furthermore, there are infinitely many

Ra × R̄b−irreducible connected graphs. E.g., any diagram of the type in figure 4a (with

an arbitrary number of dotted horizontal lines) has to be included into the subset of the

Ra × R̄b−irreducible graphs which, being Rb−reducible, are associated with the diagram

in figure 1a (via the horizontal R−1
b −deformations of the right line of the latter diagram).

Fortunately, there is the selection-rule which guarantees that only a finite number

of the Ra × R̄b−irreducible graphs which, being Rb−reducible, are assigned with a non-

vanishing 2n−point function (2.10). Therefore, it is convenient to enumerate relevant

Ra ×R̄b−irreducible graphs (with a nonvanishing quantity (2.10)) combining the latter fi-

nite number of the Rb−reducible diagrams with the Ra ×Rb−irreducible Feynman graphs

of figures 1 and 2. Correspondingly, in the sector of connected diagrams, it proves the effec-

tiveness of the proposed above prescription to include into the dressing only non-horizontal

copies (of a given kth line) satisfying the condition (3.3).

As for the selection-rule, it states the following. The 2n−point function (2.10), asso-

ciated with a generic Rb−reducible connected G = 1 diagram, is nonvanishing only when

the diagram includes not more than two distinct Rb−equivalent9 horizontal lines. Further-

more, these two lines should be attached to different horizontal sides of the rectangle C.

(To give an example of the reduction, consider various R−1
b -deformations of the right hori-

zontal line in figure 1a, e.g., those depicted in figures 4a and 4b. Then, this rule guarantees

in particular that the diagrams like in figure 4a are assigned with the vanishing amplitude.)

Finally, starting with the set of the Ra × Rb−irreducible G = 1 graphs and employ-

ing thus implemented reduction, it is straightforward to reconstruct those Rb−reducible

G = 1 diagrams which, being Ra ×R̄b−irreducible, are described by a nonvanishing quan-

tity (2.10). A direct inspection shows that these are only the Feynman diagrams10 in figures

7a and 7e.

Let us also note another constraint to be used in the discussion below. Both the

elementary graphs in the figures 2a and 2b and all their deformations are assigned with

vanishing 2n−point functions (2.10) and, therefore, can be excluded from the analysis. This

9Two lines are called Rb−equivalent if, being endowed with labels i and k, they comply with the

condition (3.3).
10As previously, the figures are postulated to fix the topology of the attachment of the lines’ end-points

to the upper and lower horizontal sides of C = ¤.
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property, which enforces the considered selection-rule, may be inferred from the general

expressions discussed in subsection 6.1.

3.3 Refinement of the resummation algorithm

According to eq. (3.4), given a generic connected graph, the pattern of the corresponding

2l−point function can be deduced from eq. (2.10) via the replacement D22(zk) → fk(zk, . . .)

performed in the 2n−point function corresponding to the associated Ra ⊗ R̄b−irreducible

diagram. Here, fk(zk, . . .) takes into account possible R̄−1
b −dressing of the kth line of

the irreducible diagram (described by the matrix Cij of rank n ≥ l) which is related to

the connected graph in question via a sequence of R̄b−deformations. Furthermore, once

a kth line of the irreducible diagram may be dressed by conglomerates of R̄−1
b −copies

characterized by an unambiguous value of the corresponding parameter α(k), (in the com-

putation of the amplitude) the overall R̄−1
b −dressing of this line can be accounted by a

concise exponentiation prescription. This prescription results in the replacement of the

associated perturbative propagator by its effective counterpart to be explicitly written in

subsection 5.3.

The resummation algorithm, built on the Ra ⊗ R̄b−deformations of the variety of

the Ra ⊗ R̄b−irreducible diagrams, still has a deficiency which is rooted in the following

property. Some of these diagrams contain time-ordered components which possess a single

line such that its R̄b−deformations may be assigned with different signs of α(r) introduced

in eq. (3.7). In consequence, the concise replacement of the propagator can not be directly

applied to such a line that renders a graphic interpretation of the computations rather

murky. To circumvent this problem, we propose the following refinement of the algorithm

to reproduce the complete set of the connected G = 1 diagrams. Instead of the Ra ⊗

R̄b−irreducible Feynman diagrams, the idea is to introduce the larger set of the elementary

time-ordered connected graphs which is postulated to include not only all time-ordered

components of the Ra ⊗ R̄b−irreducible Feynman diagrams in figures 1, 2, 7a, and 7e, but

also a variety of a few connected R̄b−reducible graphs. Correspondingly, the algorithm of

the R̄−1
b −dressing of the elementary graphs is different compared to the dressing of the

irreducible diagrams (while the Ra−dressing is not modified).

To begin with, a single line of some judiciously chosen subset of the elementary graphs

is not dressed at all in the sense that the corresponding perturbative propagator is not

modified. In turn, the overall R̄−1
b −dressing of each of the remaining lines, being charac-

terized by an unambiguous sign of the corresponding parameter α(r), it does lead to the

required replacement of the corresponding perturbative propagator by the effective one.

As for the supplementary subset of the elementary graphs11 where the dressing is applied

to their lines, this dressing is characterized by an unambiguous {α(k)}−assignment for any

such graph.

Concerning the variety of the elementary graphs with a single line without the

R̄−1
b −dressing, the prescription differs for its R̄b−irreducible and R̄b−reducible varieties.

In particular, the variety of the R̄b−irreducible graphs contains a certain specific subvari-

11All graphs in this variety are necessarily R̄b−irreducible.
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ety where this line coincides with the previously discussed line, the R̄−1
b −copies of which

may be endowed with both signs of α(k). In the case of any given R̄b−reducible elementary

graph, there is exactly one pair of R̄b−equivalent lines. The dressing is not to be assigned to

one of the latter two lines so that the following fine-tuning takes place. The elimination of

the remaining R̄−1
b −copy of this line transforms the graph into such R̄b−irreducible graph,

where precisely the same line is to be devoid of the R̄−1
b −dressing. Furthermore, there are

precisely two distinct R̄b−reducible elementary graphs which, being associated respectively

with the options α(k) = 1 and α(k) = −1, are transformed into a given irreducible graph in

the above specific subvariety.

3.3.1 First look at the elementary graphs

To realize the above program, let us first select those of the irreducible diagrams that

contain certain time-ordered components possessing a (single) line, the R̄b−copies of which

may be assigned with different signs of α(r). A direct inspection verifies that these may be

only diagrams with a single horizontal line (labeled by 1) associated with both signs of α(1),

i.e., the diagrams in figures 1c,1d and 2e,2f. Examples of the relevant components of the

latter diagrams are given by the time-ordered graphs represented by the solid lines in figures

8a,b (corresponding to the diagram in figure 1c) and in figure 8c (corresponding to the

diagram in figure 2e). The components, associated with both signs of α(1), are geometrically

selected by the condition that the lower end-point of each of the non-horizontal lines is

located in the interior of the time-interval bounded by the end-points of the horizontal

line. The extension to the case of figures 1d and 2f is routine.

Then, the proposal is threefold. First, with each of the above components, we associate

the pair of the extra graphs obtained via the addition of such a single R̄−1
b −copy of the

horizontal line that is assigned with α(1) = 1 and α(1) = −1 correspondingly (where α(1) is

to be identified with α
(1)
21 in the sense of eq. (3.6)). For example, the considered components

of the diagram in figure 1c are associated with those components of the Feynman diagrams12

in figures 7b and 7c which are constrained by the following condition. The lower end-

point of the non-horizontal line, traced back to figure 1c, is confined in the interior of the

time-interval bounded by the end-points of the R̄−1
b −copy of the horizontal line. Second,

both in the considered components in figures 1c,d, 2e,f and in all thus associated with

these components pairs of the extra graphs, the horizontal line is not to be endowed with

any R̄−1
b −dressing at all. As for admissible R̄−1

b −deformations of the R̄−1
b −copy of the

horizontal line in the extra graphs, (in the sense of the k = 1 option of eq. (3.6)) they

are all described by the same parameter α
(1)
l1 (with l ≥ 3) equal to the corresponding

value of α(1) ≡ α
(1)
21 unambiguously characterizing a given extra graph. In this way, one

evidently reproduces the entire pattern of the R̄−1
b −dressing of the horizontal line originally

formulated in the resummation-algorithm starting with the Ra ⊗R̄b−irreducible Feynman

diagrams.

12Observe also that, in view of the condition (3.5), the geometry of these diagrams implies the additional

constraint on the relative time-ordering of their end-points. E.g., in figure 7c the lower leftmost end-point

(of the R̄−1
b −copy of the horizontal line) must be to the right with respect to the upper leftmost end-point

(of the horizontal line).
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Third, to complete the proposal, it is convenient (see subsection 4.1) to apply the

similar procedure not only to the time-ordered components of the diagrams in figures

1c,1d and 2e,2f but also to all the time-ordered graphs which may be related to the latter

components via vertical reattachments applied to the leftmost or rightmost end-points

of the lines these components. Preserving both the time-coordinates of the latter end-

points and the intersection-matrix (modulo possible change of the sign of its entries), in

this particular case the reattachments replace either one or both end-points of the single

horizontal line from one horizontal side of C to another. E.g., in the case of figures 1c,1d,

thus selected time-ordered graphs present those components of the diagram in figure 1e

where both end-points of one line belong to the interior of the time-interval bounded by the

end-points of the other line. Although both lines of the latter components are associated

with a single value of α(r), there is the following correspondence. Matching the pair of the

α(1) = ±1 options of the R̄−1
b −dressing of the horizontal line of the above components in

figures 1c and 1d, there are two options of the topology of the considered components of

the diagram in figure 1e. The options are differentiated by the property whether the lower

end-point of the bounding line (obtained via a reattachment from the horizontal line of

figure 1c or 1d) is to the left or to the right with respect to the upper end-point of this

line.

Altogether, we arrive at the simple geometrical prescription to generate (in addition

to figures 1, 2, 7a, and 7e) thus specified variety of the R̄b−reducible connected graphs

which possess exactly one pair of the lines that, being labeled by i and k, comply with

the condition (3.3). These graphs can be obtained from the time-ordered components of

the Feynman diagrams in figures 7a and 7e via the above vertical reattachments applied

to the leftmost or/and rightmost end-points of each of these R̄b−irreducible diagrams.

Modulo the reflection interchanging the horizontal sides of C = ¤, the additional Feyn-

man diagrams are depicted in the remaining figures 7 so that the relevant time-ordered

components are selected by the following topological conditions. In figures 7c,d and 7g,h,

the lower rightmost end-point must be to the left with respect to the upper rightmost

end-point. In turn, in figures 7b,f the lower leftmost end-point must be to the right with

respect to the upper leftmost end-point. In particular, thus constrained diagram in figure

7d and its reflection-partner are associated with those components of the diagram in figure

1e where both end-points of one line are located in the interior of the time-interval bounded

by the end-points of the other line.

4. The parameterization of the elementary graphs

To properly parameterize the elementary graphs introduced in the end of the previous sec-

tion, we first discuss two types of the symmetry-transformations which relate these graphs

so that they are combined into the corresponding symmetry-multiplets. By construction,

the transformations do not alter the structure of the overall R−1
a ⊗ R̄−1

b −dressing which,

therefore, characterizes a given multiplet as a whole. Then, both prior and after the overall

R−1
a ⊗ R̄−1

b −dressing, the multiplets of the elementary graphs are parameterized by the
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Figure 5: Examples of the R−1
a ⊗ R̄−1

b
−dressing of (a) the elementary graph in figure 1a, (b) the

elementary graph in figure 2c and (c) protograph in figure 3a. The dressed graphs are associated

with the γ − 1 = r = v = 0 effective amplitudes implemented as (a) Z
(1)
100, (b) Z

(1)
200 and (c) Z00.

appropriate γjrv−assignment. In turn, within a given multiplet, its members are distin-

guished through certain supplementary {ak}rv−assignment.

We also discuss how the multiplets are naturally combined (with the help of the symme-

try transformations) into the rv−varieties. Being associated with the decomposition (1.8),

the latter varieties are labeled by the corresponding multiplets of the protographs param-

eterized by the same {ak}rv−assignment.

4.1 S(4)−symmetry and reflection-invariance

To introduce the required transformations, we are to postulate the following convention.

When the elementary graphs are associated to one and the same time-ordered component

of a given Feynman diagram, they are nevertheless considered to be different, provided the

topology of the attachment of their lines’ end-points (to the upper and lower horizontal

sides of C = ¤) is different. For example, the pairs of distinct graphs are depicted in

figures 1a, 1b and figures 1c, 1d respectively.

Turning to the transformations of the elementary graphs, the first type is implemented

through the vertical reattachments which, being introduced in subsection 3.3.1, can be com-

bined to generate S(4)−multiplets of the latter graphs. Consisting of four graphs, each such

multiplet implements the discrete space of the S(4)−group13 of permutations. Since the

reattachments involve only the rightmost or/and leftmost end-points of the graphs, thus im-

plemented reattachments do not alter the modulus of the entries of the intersection-matrix

Cik associated to the graph used to generate the other three member of the S(4)−multiplet.

An example of such multiplet is given by the graphs represented in figures 5c and 6a-6c by

13When applied simultaneously to this 4−set of the graphs, the reattachments can be used to generate

the 4! elements of the group itself.
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6a

6b

6c

Figure 6: Examples of the R−1
a

⊗R̄−1
b

−dressing of the three protographs which are obtained from

the protograph in figure 3a through the application of the vertical reattachments to its (a) leftmost

end-point, (b) rightmost end-point and (c) both of the latter end-points.

the solid lines, where the reattachments replace (from one horizontal side of C to another)

the single end-point of either one or both of the horizontal lines of the graph in figure 5c.

Furthermore, not only the elementary graphs but also their deformations, included

into the subsets described by the corresponding effective amplitudes, are unambiguously

split into a finite number of distinct (non-overlapping) S(4)−multiplets. As it is illustrated

by the figures 5 and 6, the required symmetry of the dressing is maintained by the con-

dition that, as well as the end-points of the R−1
a −copies, the positions of the end-points

of all the R̄−1
b −copies of any line (of a given elementary graph) are left intact under the

reattachments. In this sense, the R̄−1
b −dressing of each of the lines (including the ones

involved into the S(4)−reattachments) is S(4)−invariant.

As for the second type of the transformations, the S(4)−multiplets of the elementary

graphs may be related via the S(2)−reflection that (mapping the contour C = ¤ onto itself)

mutually interchanges the two horizontal sides of C. Leaving intact the R−1
a −dressing, this

transformation is nontrivially applied not only to the lines of the elementary graph but also

to all the R̄−1
b −copies of these lines. To avoid double-counting, one is to consider only such

reflections of the protographs which can not be alternatively reproduced as compositions

of the vertical S(4)−reattachments.

Finally, one can implement the S(4) ⊗ S(2)−transformations to combine the

dressed (by all admissible R−1
a ⊗ R̄−1

b −deformations) elementary graphs into the S(4) ⊗

S(2)−multiplets.

4.2 The γjrv−parameterization of the S(4) ⊗ S(2)−multiplets

Let us introduce the four integer numbers γ, j, r, and v which parameterize the

S(4)⊗ S(2)−multiplets of the elementary graphs both prior and after their dressing by all
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admissible R−1
a ⊗ R̄−1

b −deformations. Each such multiplet contains hrv = 2 + r − v = 1, 2

S(4)−multiplets related via the S(2)−reflections discussed above. It is done so that

the relevant geometry of the multiple deformations of the elementary graphs in all

S(4) ⊗ S(2)−multiplets is specified in the reflection- and reattachment-invariant way.

As a result, the algorithm of the resummation can be decomposed into the two steps.

At the first step, for given values of γ, j, r, and v, one considers the dressing of certain

hrv = 2 + r − v special elementary graphs related (when hrv = 2) via the S(2)−reflections.

In the corresponding S(4)−multiplet, each of the latter graphs has the maximal number

(equal to hrv) of the horizontal lines attached to 1 + r different horizontal sides of C = ¤.

At the second step, the remaining three elementary graphs of each S(4)−multiplet

can be then reproduced (together with their dressing) via the vertical reattachments of

the leftmost or/and rightmost end-points of the above 2 + r − v horizontal lines. By

construction, the intersection-matrix is invariant (modulo possible change of the sign of its

entries) under these S(4)−transformations.

Similar procedure introduces the rv−parameterization of the associated

S(4)−multiplets of the (dressed) protographs relevant for the decomposition (1.8).

Consider a given rv−variety of the special elementary graphs which, sharing the same

hrv horizontal lines involved into the reattachments, are endowed with different values of

γ and j. Then, the associated time-ordered protograph is represented precisely by these

hrv horizontal lines. As previously, the remaining three members of each S(4)−multiplet

of the protographs are generated through the above vertical reattachments. Also, by

the same token as in the case of the elementary graphs, the reflections are employed to

generate S(4) ⊗ S(2)−multiplets of the protographs.

Generalities of the proposed algorithm are discussed in subsections 4.2.1- 4.2.3 while

the explicit construction is sketched in subsection 4.2.4.

4.2.1 The topological jrv−parameterization

Consider first the integers j, r and v which can be interpreted directly in terms of

the relevant topological properties common for all the elementary graphs in a given

S(4)−multiplet. To begin with, r = 0, 1 is equal to the number of the pairs of the

R−1
b −equivalent (in the sense of subsection 3.2.1) lines available in a given elementary

graph. Correspondingly, all the time-ordered graphs associated with figures 7 are assigned

with r = 1, while the time-ordered components of the remaining Feynman diagrams in

figures 1 and 2, are parameterized by r = 0.

Next, the number of the lines is equal to n = 1 + j + r so that j = 1, 2. Therefore,

the graphs of figures 1 and 7a-7d are assigned with j = 1, while the remaining elementary

graphs are assigned with j = 2. It is also noteworthy that, for a given r, j+1 = n−r = 2, 3

yields the multiplicity of the irreducible star-product, the form of which (discussed in

the beginning of section 3) assumes both the corresponding perturbative 2n−point func-

tion (2.10), and its effective counterpart to be considered in subsection 6.1.

As for v = 0, 1 (with 0 ≤ r ≤ v ≤ 1 in compliance with eq. (1.8)), topologically it

is determined employing the property that the nth order elementary graph has exactly

hrv = 2 + r − v lines which may be involved into the vertical S(4)−reattachments without
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changing (the modulus of) the entries of the intersection-matrix Cij . In other words, the

rightmost and leftmost end-points of a given graph (which are the only its end-points such

that the group of their reattachments do not alter |Cij| for ∀i, j) belong to hrv distinct lines

of the graph. Correspondingly, all end-points of the remaining n − hrv lines (not involved

into the reattachments) are located in the interior of the time-interval bounded by the

leftmost and rightmost end-points of the hrv reattached lines. Furthermore, only hrv − v

of the reattached lines are to be dressed, together with all the remaining n − hrv lines not

involved into the reattachments, by the R̄b−copies so that the corresponding perturbative

propagators are replaced by their effective counterparts.

4.2.2 The rv−parameterization of the multiplets of the protographs

The parameters r and v can be used to enumerate the protographs which are time-ordered

as well. A particular protograph, can be reconstructed eliminating all the n − hrv lines

of the corresponding elementary graph except for the 2 + r − v lines affected by the

S(4)−reattachments. Modulo the S(4)−reattachments, thus separated protographs are de-

picted by solid lines in figures 3a-3e for those protographs which, for a given rv−assignment

possess the maximal number 2 + r − v of the horizontal lines (attached to 1 + r different

horizontal sides of C = ¤). The figures 3a,b and 3d,e are in one-to-one correspondence

with the pairs of the S(4)−multiplets which, being related via the reflection (interchanging

the horizontal sides of the contour C), are characterized by r = v = 0 and r = v = 1

respectively. In particular, the r = v = 0 multiplet, associated with the protograph in

figure 3a, is given by the protographs represented in figures 5c and 6a-6c by the solid lines.

In turn, figure 3c refers to the single r = v − 1 = 0 multiplet.14

In sum, there are precisely hrv = 2 + r − v S(4)−multiplets of the protographs which,

being parameterized by a particular rv−assignment, are related via the S(4)−reflections.

4.2.3 The γ−parameterization

The necessity to complete the jrv−parameterization and introduce one more parameter

γ, additionally specifying the S(4) ⊗ S(2)−multiplets, is motivated by the geometry of

the pairs of the different elementary graphs depicted by solid lines in figures 8a, 8b (both

characterized by j = r + 1 = v = 1) and 9a, 9b (both characterized by j = r = v = 1). To

distinguish between the graphs in each pair we introduce the additional label γ = 1, 2 so

that figures 8a,9a and 8b,9b are parameterized by γ = 1 and γ = 2 respectively.

In general, with the help of the additional parameter γ = 1, . . . , fjrv, one is to enu-

merate distinct S(4)⊗S(2)−multiplets of the graphs which are singled out when one fixes

the parameters j, r, and v. The previous discussion suggests that, to find the number fjrv

14Recall that, in order to avoid double-counting, we take into account only those reflections of the

protographs which can not be alternatively reproduced as compositions of the vertical S(4)−reattachments.

Correspondingly, the v = 1 protograph in figure 3c should not be accompanied by the reflection-partner

which, being defined by the requirement that both end-points of the single line are attached to the lower

side of C, can be alternatively obtained via the composition of the two vertical reattachments. Note also

that the genus of the v = 1 protographs is zero rather than one which explains why we have to start from

the elementary graphs rather than directly from the protographs.
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of such multiplets, it is sufficient to consider only the variety of those elementary graphs

which, representing the corresponding multiplet, possess the maximal number hrv of the

horizontal lines for a particular jrv−specification. Then, fjrv is equal to the number of

distinct time-ordered jrv−components (of the same Feynman diagram) which, belonging

to the latter variety, are not related via the S(4)⊗S(2)−transformations. In turn, our aim

is to prove that the latter number (being, in fact, r−independent) is equal to

fjv = (1 − v) + (3 − j)v , fj0 = f2v = 1 , ∀j, v , (4.1)

which, in particular, implies that fjv = 1, 2.

To this aim, for a particular jrv−specification, it is convenient first to fix generic

positions both of the 2+ r− v horizontal lines (involved into the S(4)−reattachments) and

of the upper end-points of the remaining n−(2+r−v) = j−1+v non-horizontal lines. Then,

fjrv can be identified with the number of different admissible
[

⊗j−1+v
i=1 Sign(y2

i )
]

/S(j−1+

v)−assignments defined (when j − 1 + v > 1) modulo possible S(j − 1 + v)−permutations

of the labels i of the j − 1 + v non-horizontal lines. Here, Sign(y2
i ) denotes the sign-

function depending on the relative time y2
i (i.e. the temporal component of the relative

distance (2.9)) which, being associated with the ith non-horizontal line, may be different

for different time-ordered components15 of a given Feynman diagram.

To evaluate the number of such assignments, we first note that eqs. (3.5) and (3.3)

guarantee that fjrv is indeed r−independent, fjrv ≡ fjv. In turn, it allows to deduce

fjv restricting our analysis to the r = 0 cases. Next, we should take into account that,

among the δ−functional constraints imposed by the G = 1 effective 2n−point function

Ṽ
(n)
Uθ(1)({yk}), there are precisely n− 2 = j − 1 + r constraints which are the same as in the

case of the perturbative 2n−point function (2.10) of the associated elementary diagram,

Ṽ
(n)
Uθ(1)(·) ∼ V

(n)
Uθ(1)({yl}) ∼

n−2G
∏

p=1

δ

(

n
∑

l=1

λ
(p)
l y2

l

)

, (4.2)

where the n− 2G n-vectors λ
(p)
l , depending only on the topology of the associated elemen-

tary graph, span the subspace of those eigenvectors of the intersection matrix Ckl which

possess vanishing eigenvalue:
∑n

l=1 Cklλ
(p)
l = 0 for p = 1, 2, . . . , n − 2G. In consequence,

among the j − 1 + v lower end-points of the non-horizontal lines, only v points remain to

be independent degrees of freedom (in addition to the 2hrv |r=0 + (j − 1 + v) ones already

fixed above) when r = 0.

When v = 0, obviously fj0 = 1 for j = 1, 2. As for v = 1, when we vary the

position of the lower end-point of kth non-horizontal line representing the residual v = 1

degree of freedom, the resulting time-ordered components of the transformed diagram are

distinguished by the
[

⊗j
i=1Sign(y2

i )
]

/S(j)−assignment. Therefore, fj1 = (j−1)+2(2−j),

where it is formalized that f11 = (v + 1)|v=1 = 2, while f21 = f11 − 1 = 1. It follows from

a direct inspection of the v − 1 = r = 0 graphs represented by solid lines in figures 8a,b

15It is straightforward to observe that, once a particular jrv−specification is fixed, distinct (due to

different assignments) G = 1 elementary graphs are necessarily components of the same Feynman diagram.
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(assigned with j = 1) and 8c (assigned with j = 2). Summarizing, one arrives at the

formula (4.1) so that 1 ≤ fjv ≤ 2, and fjv = 2 only when j = v = 1.

Note that, although the construction of the parameter fjv is obviously reflection-

invariant, the action of the reflections on the S(4)−multiplets of the elementary graphs

is still nontrivial in the cases when fjv = 2. The reflections, introduced in subsection 4.2.1,

in these cases are postulated to relate those of the latter multiplets which, being endowed

with the same jrv−assignment, are described by the two different values of γ. Summariz-

ing, there are precisely hrv = 2 + r − v S(4)−multiplets of the elementary graphs which,

being parameterized by a particular γjrv−assignment, are related via the S(4)−reflections

in the j−independent way.

4.2.4 Explicit construction of the elementary graphs and their deformations

To complete the discussion of subsection 4.2, for any given jrv−assignment let us explicitly

separate the elementary graphs with the maximal amount hrv = 2+ r− v of the horizontal

lines and sketch the pattern of their R̄−1
b −deformations. In particular, we discuss geomet-

rical implications of the n− 2 = j − 1 + r specific constraints (4.2) imposed (on admissible

combinations of y2
l ) both by the perturbative and by the associated effective 2n−point

G = 1 functions. Also, a direct inspection demonstrates that, in each such graph, the pro-

posed pattern of the R̄−1
b −dressing is characterized by a unique {α(k)}−assignment which

matches the aim formulated in subsection 3.3. As for the S(4)−reattachments (generating

the corresponding S(4)−multiplets which are combined, when hrv = 2, into the pairs re-

lated via the reflections), it is verified that the proposed pattern of the R̄−1
b −dressing can

be implemented in the S(4)−invariant way.

In the r = v = 0 case when fjv|v=0 = 1, the two j = 1 and the two j = 2

S(4)−multiplets can be generated from the graphs in figures 1a, 1b and 2c, 2d respec-

tively so that, for each j, the two corresponding figures may be related via the reflection

mutually interchanging the horizontal sides of C = ¤. In the j = 1 case when n − 2 = 0,

there are no any constraints (4.2). As for the j = 2 case when n − 2 = 1, eq. (4.2) im-

plies that the relative times y2
l (associated with the three lines labeled by l = 1, 2, 3) are

constrained by the condition

C21 · y
2
3 − C31 · y

2
2 + C32 · y

2
1 = 0 (4.3)

which, geometrically, guarantees that the lower end-point of the third line is confined

in the interior16 of the time-interval bounded by the leftmost end-point of the first line

and the rightmost end-point of the second line. It is this specific property which, being

S(4)−invariant, implies that both of the latter end-points may be consistently involved

into the S(4)−reattachments without changing |Cik| with i, k = 1, 2, 3.

Concerning the R̄−1
b −dressing, it applies to all n = j + 1 lines of the considered r =

v = 0 elementary graphs since all these lines are associated with a unique α(k)−assignment.

16It matches the fact that both the elementary graphs in the figures 2a, 2b and all their R−1
a ⊗

R̄−1
b −deformations are assigned with vanishing amplitudes (2.10). A single S(4)−reattachment, applied

to the latter figures, would otherwise generate configurations (with a nonvanishing amplitude) where the

lower end-point of the third line is located outside the considered time-interval.
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In turn, the uniqueness can be inferred from figures 5a and 5b which describe the

R−1
a ⊗ R̄−1

b −dressing of the graphs in figures 1a and 2c correspondingly. The bunches

of parallel dotted lines are vertical for the lines generated by the R−1
a −deformations, while

R̄−1
b −copies are collected into the varieties depicted by dotted lines parallel to the corre-

sponding line of the elementary graph. Also, we presume the general (for ∀r, v) graphical

prescription that, supplementing the discussion in the end of subsection 3.2, determines the

time-interval spanned by the end-points of the R̄−1
b −copies of a given line. For a horizon-

tal line of an elementary graph, the upper/lower end-point of the rightmost and leftmost

copies fixes respectively the rightmost and leftmost (solid) end-points of this interval on

the upper/lower horizontal side of C = ¤. As for the dressing of a non-horizontal line of

an elementary graph, one end-point of the spanned interval is explicitly determined only

by the associated end-point of the non-horizontal line itself. The remaining end-point of

this interval is fixed by the appropriate (lower or upper) end-point of that R̄−1
b −copy of

the non-horizontal line which is furthest from this line. Next, from figures 5a and 5b,

it is geometrically clear that, in view of eq. (3.8), the R̄−1
b −dressing of each of the two

reattached lines is indeed S(4)−invariant (e.g., compare figures 5c and 6a-6c). As for the

parameterization of the lines of the elementary graphs, the left and the right horizontal

lines in figures 1a and 2c are assigned with labels 1 and 2 respectively so that C21 = 1. The

remaining non-horizontal line in figure 2c attains the label 3.

In the r = v − 1 = 0 case, the graphs with the hrv = 1 horizontal line are depicted by

solid lines in figures 8a-8c, where the horizontal line is assigned with the label 1, with the

non-horizontal line(s) being parameterized by the label(s) 2, 1 + j so that17 C23 = 1 when

j = 2. The constraint, separating these v = 1 components, is that the j + 1 end-point at

the lower side do belong to the time-interval bounded by the end-points of the remaining

horizontal line attached to the upper side. The latter constraint merely separates those

fj1 = 3 − j time-ordered components of the Feynman diagrams in figure 1c and 2e which

are not already included into the corresponding r = v = 0 S(4)−multiplets. Note also

that, as well as in the r = v = 0 case, eq. (4.2) imposes a nontrivial constraint (represented

by eq. (4.3)) only when j = 2 which results in the following geometrical property. Once

the lower end-point of the second line is confined in the required time-interval,18 the lower

end-point of the third line is confined to the same interval too.

In turn, the construction of the r = v − 1 = 0 components of the diagrams in figure

1c and 2e enforces that only the two end-points of the single horizontal line are to be

involved into the vertical S(4)−reattachments. The S(4)−transformations preserve the

corresponding variant of the above geometrical property (see also subsection 3.3.1) so that

the quantities |Cik| are indeed kept intact. As for the R̄−1
b −dressing, only non-horizontal

lines are associated with a unique α(r)−assignment, while R̄−1
b −copies of the horizontal

line may assigned with α(1) = ±1 (as it clear from figures 7b,f and 7c,g associated with

17In other words, the label 2 is assigned to the non-horizontal line with the upper end-point located to

the left with respect to the lower end-point.
18Otherwise, it would be impossible to reconcile the S(4)−symmetry with the fact that the elementary

graphs in the figures 2a, 2b (as well as all their R−1
a ⊗ R̄−1

b −deformations) are assigned with vanishing

amplitudes (2.10).
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α(1) = 1 and α(1) = −1 respectively). Correspondingly, only the non-horizontal lines are

to be dressed: see figures 8a, 8b (with j = 1) and 8c (with j = 2). As previously, the

R̄−1
b −dressing of a given solid line is depicted by the bunch of (non-vertical) dotted lines

which are all parallel to this solid line. From figures 8a-8c, it is also geometrically clear

that, in view of eq. (3.8), thus introduced R̄−1
b −dressing is S(4)−invariant.

In the remaining r = v = 1 case, the graphs with hrv = 2 horizontal lines are given by

the entire decomposition of the Feynman diagrams in figures 7a (with j = 1) and 7e (with

j = 2) into the time-ordered components parameterized by j = 1, 2 and γ = 1, fj1 = 3− j.

In turn, for a given j and γ, these components can be collected into the S(2)−multiplets.

Each pair is comprised of the two graphs which, being related via the reflection mutually

interchanging the horizontal sides of C = ¤, differ from each other by the property (utilizing

the condition (3.8)) whether the upper horizontal line is to the left or to the right with

respect to the lower one. Correspondingly, the labels 1 and 4 are assigned to the left and

right horizontal lines, while (in the case when the first line is attached to the upper side of

C) the remaining two non-horizontal lines are parameterized similar to the corresponding

figures 8a-8c.

In the j = 1 case, eq. (4.2) imposes the single condition (3.8) that can be written in the

form y2
1 = −y2

4 which. When j = 2, in addition to the latter condition, eq. (4.2) imposes

an implementation of the constraint (4.3) that leads to the following geometrical property

exemplified by the pattern of figure 7e (which, therefore, is assigned with a nonvanishing

amplitude). Namely, both the lower and the upper end-points of non-horizontal lines are

located in the time-intervals bounded by the lower and the upper horizontal lines respec-

tively. In turn, by construction of the components of the diagram in figure 7a and 7e,

the S(4)−reattachments involve only the rightmost end-point of the right horizontal line

and leftmost end-point of the left horizontal line. (In particular, the relevant components

of figures 7b,f and 7c,g are related via the corresponding S(4)−transformations, to those

components of the Feynman diagram in figure 7a,e where the upper horizontal line is re-

spectively to the right and to the left with respect to the lower one.) This implementation

of the S(4)−transformations is self-consistent since they preserve the corresponding variant

of the latter geometrical property19 that allows to keep intact the quantities |Cik|. Concern-

ing the pattern of the R̄−1
b −dressing, all lines possess their individual dressings except for

the two horizontal lines (assigned with the labels 1 and 4 respectively). As it is clear from

figures 9a, 9b (with j = 1) and 9c (with j = 2), there is an ambiguity in the assignment

of R̄−1
b −dressing to one of the latter two lines (in the sense of the replacement of the as-

sociated perturbative propagator by the effective one). For concreteness, we associate this

dressing with the fourth line. Also, these figures demonstrate that (in view of eq. (3.8))

thus implemented R̄−1
b −dressing, being characterized by a unique {α(r)}−assignment for

any r = v = 1 elementary graph, is S(4)−invariant.

Summarizing the notations, in each S(4)−multiplet of the elementary graphs, the

labels of the R̄−1
b −dressed lines assume n − v = r + j − v + 1 different values in the

19The relevant variants are represented by the geometrical constraints imposed on the relevant components

in figures 7b-7d and 7f-7h in the end of subsection 3.3.1.
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7a

7b

7c

7d

7e

7g

7f

7h

(a),(e) R̄b−irreducible and (b)-(d),(f)-(h) R̄b−reducible.

Figure 7: Connected Rb−reducible elementary graphs:

set Ωjrv obtained from the sequence 1 + v, 2, 1 + j, 2 + 2r via the identification of

the v + (2 − j) + (1 − r) = 4 + v − n coinciding entities (all being equal to 2) so that

n−v =
∑

k∈Ωjrv
1. Correspondingly, to parameterize the entire set of n lines, we introduce

the set Ω̃jrv obtained from the sequence 1, 2, 1 + j, 2 + 2r via the identification of the
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(2 − j) + (1 − r) = 4 − n coinciding entities so that n =
∑

k∈Ω̃jrv
1. In turn, the labels

of the 2 + r − v lines, involved into the S(4)−reattachments, assume values in the set Srv

obtained from the sequence 1, crv = 2 + 3r − v (with crv = 1, 2, 4) via the identification of

the v − r coinciding entities.

4.3 The residual {ak}rv−parameterization

It remains to fix the residual parameterization to distinguish between the four different

members of a given S(4)−multiplet endowed with a particular γjrv−assignment. For each

of the reattached lines, 1 + (v − r) of its end-points are S(4)−transformed. Therefore,

for cases other than r = 1 − v = 0, the reattachments can be uniquely determined by

the values of the spatial coordinates20 y1
k = 0, R of the hrv = 2 lines involved into the

S(4)−transformations. In turn, the latter coordinates can be faithfully represented by the

parameters ak = 0, 1 so that y1
k = akR, with k assuming the hrv = 2 different values

(k = 1, 2 and k = 1, 4 in the r = v = 0 and r = v = 1 cases respectively).

In the r = 1 − v = 0 case (when hrv = 1), in addition to a1 we have to introduce the

extra parameter ã1,

x1(s′1) = (1 − a1)ã1R , x1(s1) = ã1R + (1 − ã1)a1R , (4.4)

which is equal to 1 and 0 depending on whether or not the reattachment involves the

left(most) end-point of the solid horizontal line in figures 8a-c (while x1(s1)−x1(s′1) = a1R).

To simplify the notations, the pair of the parameters, used to represent the reattachments,

is denoted as {ak} ≡ {ak}rv for all 0 ≤ r ≤ v ≤ 1.

5. Dressing of the elementary graphs and protographs

To derive the representation (1.8), the first step is to express < W (¤) >
(1)
Uθ(1)

in terms

of the S(4)−multiplets of the effective 2n−point functions. Each of these functions de-

scribes the corresponding elementary graph together with all its admissible R−1
a − and

R̄−1
b −deformations according to the algorithm sketched in the previous section.

In view of the factorization (3.2), for C = ¤ it is convenient to represent the effec-

tive functions as the product I(n)({yk})Ṽ
(n)
Uθ(1)

({yk}), where {yk} denotes the set of the

relative coordinates (2.9) characterizing the corresponding time-ordered elementary graph

of a given order 2n. In particular, the factor I(n)(·) (to be defined in eq. (5.5)) accumu-

lates the overall R−1
a −dressing of the latter graph. As for Ṽ

(n)
Uθ(1)(·), it describes a given

elementary graph together with the entire its R̄−1
b −dressing in the way consistent with the

S(4) ⊗ S(2)−symmetry. In turn, the quantity Ṽ
(n)
Uθ(1)(·) can be introduced as the concise

modification of the corresponding elementary 2n−point function (2.10). For this purpose,

the perturbative propagators of certain n− v lines should be replaced by the effective ones

defined by the fk = 1 option of eq. (5.6).

20One is to identify R = x1(sl)−x1(s′l), sl > s′l, with the spatial component of the relative distance (2.9)

such that x(sl) and x(s′l) belong respectively to the lower and upper horizontal sides of the contour C = ¤.

In turn, in view of the proper time parameterization fixed prior to eq. (2.4), it implies that the vertical

1−axis is to be directed from the upper to the lower horizontal side of the rectangle ¤.
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Parameterizing the effective functions, the elementary graphs can be viewed as the in-

termediate collective coordinates which are useful in the computation of the corresponding

individual effective amplitudes

1

(2πθ̄)2
Z

(γ)
jrv({ak}, Ā, θ̄−1) =

∮

C

n
∏

l=1

dx2(sl)dx2(s′l) I(n)({yk})Ṽ
(n)
Uθ(1)({yk})

∣

∣

∣

γ

jrv
(5.1)

where the vertical S(4)−reattachments of the hrv = 2 + r − v lines are described by

the set of the parameters {ak} ≡ {ak}rv introduced in subsection 4.3. By construction,

the G = 1 term < W (¤) >
(1)
Uθ(1) of the expansion (1.4) can be represented as the su-

perposition of the amplitudes (5.1) which, as we will see, should be combined into the

rv−superposition Zrv({ak}, ·). These superpositions are obtained summing up the ampli-

tudes (5.1) corresponding to all
∑2

j=1 fjv elementary graphs which are associated with a

given rv−protograph according to the prescription discussed in subsection 4.2.2. Then,

eq. (1.8) is reproduced provided

Zrv(Ā, θ̄−1) =
∑

{al}rv

Zrv({ak}, Ā, θ̄−1) , (5.2)

Zrv({ak}, Ā, θ̄−1) =
2

∑

j=1

fjv
∑

γ=1

Z
(γ)
jrv({ak}, Ā, θ̄−1) ,

where fjv is defined in eq. (4.1), and the sum over {al}rv includes the contribution of

the four terms related through the S(4)−reattachments applied to the end-points of those

lines which, being associated with the corresponding protograph, are parameterized by the

label l ∈ Srv (where the set Srv is introduced in the end of subsection 4.2.4). In this

way, Zrv(Ā, θ̄−1) yields the contribution of the S(4)−multiplet of the dressed protographs

endowed with a given rv−assignment. (In view of the factor hrv present in eq. (1.8),

eq. (5.2) takes into account that, when hrv = 2, the dressed elementary diagrams can be

collected into the pairs related via the reflection which leaves the amplitudes Zrv(Ā, θ̄−1)

invariant, as it is verified in appendix D.)

Then, building on the pattern of the perturbative functions (2.10), the amplitude

Zrv({ak}, ·) can be reproduced in a way which reveals the important reduction resulting

in the final set of the collective coordinates that, in turn, supports the relevance of the

protographs. We postpone the discussion of this issue till subsection 5.3.1.

5.1 Introducing an explicit time-ordering

To proceed further, it is convenient to reformulate both I(n)({yi}) and Ṽ
(n)
Uθ(1)({yi}) in

terms of a minimal amount of independent variable arguments instead of the n−set {yi}

of the relative distances (2.9). Consider a rectangular contour C = ¤ such that R and T

denote the lengths of its vertical and horizontal sides which, in the notations of eq. (2.3), are

parallel respectively to the first and the second axis. Then, the subset {y1
i } can be reduced

to the variety {ak} of the parameters discussed in the context of eq. (5.2). Concerning the

reduction of the remaining subset {y2
i }, it is implemented by the constraints (4.2) imposed
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on the temporal components y2
l , In consequence, there are only m = n+2 independent time-

ordered parameters τk ≥ τk−1 which can be chosen to replace the set of the 2n temporal

coordinates x2(sl) and x2(s′l) assigned to the line’s end-points of a given elementary graph.

There is a simple geometrical prescription to introduce τk (with τ0 = 0, τm+1 = T ) in

such a way that fits in the purpose of the further description both of the R−1
a − and of the

R̄−1
b −dressing. It is convenient to introduce this prescription in the two steps. First, it is

performed for those graphs in a given S(4)−multiplet (with a particular γjrv−assignment)

which are characterized by the maximal number hrv = 2 − v + r of the horizontal lines.

Second, combining the S(4)−reattachments and the reflection, this prescription can be

generalized to deal with the entire S(4)−multiplets collected into hrv reflection-pairs. Here,

we restrict the discussion to the first step. A more detailed representation of the algorithm

is given in appendix A where, in particular, explained how the proposed prescription can

be formulated in the way invariant both under the S(4)−reattachments and under the

reflection.

We proceed with the observation that there are m−v parameters τi which are directly

identified with the properly associated coordinates x2(·) in the latter 2n−set. Consider

the simplest r = v = 0 cases of the elementary graphs in figures 1a and 2c endowed with

hrv = 2 horizontal lines. Then, the m parameters τi simply relabel, according to the relative

time-ordering, the set of the m end-points (of the graphs) attached in these two figures to

the upper horizontal side of C = ¤. In the v = 1 cases (described by the solid lines in

figures 8a-8c for r = 0 and in figures 9a-9c for r = 1), there are as well the m − 1 direct

reidentifications associated with the following end-points of the elementary graphs with hrv

horizontal lines. These are the left- and rightmost end-points of the graph (belonging to

1+r its distinct horizontal lines) together with all the remaining m−3 end-points attached

to the lower horizontal side of C. As for one more still missing parameter τi0, we are to

consider j extra non-horizontal lines introduced in the following way. Each such line, being

R̄−1
b −copy of one of j distinct non-horizontal lines of the elementary graph, assumes the

furthest admissible position compared to the latter line of the graph in question. When

r = 0, the variable τi0 is to be identified with the lower end-point of the single extra line.

When r = 1, the condition (4.3) implies that the lower end-points of the pair of the extra

lines coincide, being therefore both identified with τi0 .

Next, on the upper (or, alternatively, lower) horizontal side of the rectangle C, τq and

τq−1 can be viewed as the bordering points of the n+3 connected non-overlapping intervals

∆τk−1 = τk − τk−1 ≥ 0 ,
m

∑

k=0

∆τk = T , m = n + 2 = j + r + 3 , (5.3)
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the overall time T is split into. Consequently, the previously introduced relative times21

t(γ)
p ≡ y2

p

∣

∣

∣

γ

jrv
= (−1)sp({ak})

m
∑

l=0

d
(γ)
jrv(p, l) ∆τl , d

(γ)
jrv(p, 0) = d

(γ)
jrv(p,m) = 0 , (5.4)

can be represented as the superpositions of ∆τk, and for simplicity we omit the superscript

jrv in the notation t
(γ)
p . In eq. (5.4), d

(γ)
jrv(p, l) = 0,±1, while sp({ak}) denotes an integer-

valued p−dependent function22 which additionally depends on the set {ak} of the variables

introduced after eq. (4.4). E.g., the geometry of figures 8a and 8b implies that t
(1)
2 < 0

and t
(2)
2 > 0 respectively. Let us also note that the S(4)−symmetry of the dressing of

the elementary graphs implies that the pattern of t
(γ)
p is the same for all members of each

S(4)−multiplet.

5.2 Accumulating the R−1
a −deformations

Given a particular effective amplitude, the associated R−1
a −deformations a given elemen-

tary graph are generated via all possible inclusions of such extra lines that, in accordance

with eq. (3.1), intersect neither each other nor the original lines of the graph. In figures 3-9

the latter extra lines are depicted as vertical (due to the δ−function in the perturbative

propagator (2.3)) and dotted. In view of eq. (3.2), the inclusion of the deformations of

this type merely multiplies the amplitude, describing the original elementary graph, by a

factor I(n)({yk}). To deduce this factor, we note that the temporal coordinates of the

upper end-points of the R−1
a −copies may span only the first and the last intervals ∆τ0 and

∆τn+2 respectively. Then, akin to the commutative case, it is straightforward to obtain

that, when the superposition of all the admissible R−1
a −copies is included, it result in

I(n)({yk}) = exp (−σ|R| [∆τ0 + ∆τn+2]) , (5.5)

the τj−dependence of which matches the pair of the conditions (5.4) imposed on d
(γ)
jrv(p, l).

5.3 The R̄−1
b −deformations and the effective propagators

Next, consider the block Ṽ
(n)
Uθ(1)(·) that results after the R̄−1

b −dressing of a given elementary

graph with n lines. The short-cut way to reconstruct this block is to specify those n −

v (with v = 0, 1) lines of the latter graph where the corresponding propagator (2.3) is

replaced, in the relevant implementation of eq. (2.10), by its effective counterpart so that

the S(4)−symmetry of the overall dressing is maintained. When the kth line is dressed

by all admissible R̄−1
b −deformations, the replacement is fixed by the fk = 1 option of the

substitution

D22(zk) −→
(

−σ|z1
k|

)fk δ
(

z2
k

)

exp
(

−σ|R + (z1
k − y1

k)α
(k)|∆T b

k(fk, γ)
)

, k ∈ Ω2rv ,

(5.6)

21As the temporal intervals y2
l are overlapping in general, it hinders a resolution the G = 1 con-

straints (4.2) directly in terms of these intervals. On the other hand, the n > 2 splitting (5.4) yields the

concise form to represent, for any given time-ordered component of a Feynman graph, the latter resolution

employing the non-overlapping intervals ∆τk.
22The explicit form of this function is fixed by eq. (D.5) in appendix D.
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that reduces to the ordinary multiplication of the propagator D22(·) by the k−dependent

exponential factor (with the set Ωjrv of the n−v different labels being defined in the end of

subsection 4.2.4). In this factor, the parameter α(k) = ±1 is traced back to eq. (3.8), and

each elementary graph is unambiguously endowed with a single {α(i)}−assignment (with

i ∈ Ωjrv).

Also,

∆T b
k(fk, γ) = ∆τq(k) + [1 − fk]∆τ

q(k)+2ω
(γ)
k

−1
,

∆T a
q = ∆τq , q = 0, n + 2 ,

(i.e., f0 = fn+2 = 1), while the extra subscripts a and b are introduced to indicate the type

of the associated deformations. In turn, in the fk = 1 case the interval ∆T b
k(1, γ) = ∆τq(k)

is spanned by the end-points of the R̄−1
b −copies of the kth line (see subsection 4.2.4 for

particular examples). As for the function q(k) defining the label of the corresponding

interval (5.3), it formally determines an embedding of an element of the S(n− v) group of

permutations into the S(n + 1) group: 0 < q(k) < n + 2 for all different n − v values of

k ∈ Ωjrv. In appendix A, we sketch a simple rule which allows to reconstruct q(k) so that,

for any given S(4)−multiplet, this function is the same for all four elementary graphs in

this multiplet.

5.3.1 The completeness of the R̄−1
b −dressing of the protographs

To explain the relevance of a certain fk 6= 1 option of the replacement (5.6), we should

take into account that, in the evaluation of the amplitude Zrv({ak}, ·) defined by eq. (5.2),

there are important cancellations between the contributions of the individual effective am-

plitudes (5.1). To obtain Zrv({ak}, ·) for a particular rv−assignment, it is sufficient to

take the single j = 2 elementary graph (unambiguously associated with the corresponding

protograph) and apply, according to a judicious {fk}−assignment, the replacement (5.6)

to the same n−v lines of this graph as previously. But, contrary to the computation of the

amplitudes (5.1), the fk = 1 variant of the replacement (5.6) remains to be applied only

to the 2 + r − 2v lines involved into the S(4)−reattachments. The point is that fk = 0 for

all the (v + j − 1)|j=2 lines which, being not affected by the reattachments (while labeled23

by k ∈ Ω̃2rv/Srv, i.e., k = 3 and, when v = 1, k = 3 − v), therefore do not belong to

the protograph. Furthermore, it is accompanied by such reduction of the measure that,

implying the a specific completeness condition discussed below, retains relevant variable

arguments which, at least in the simpler r = v = 0 case, are associated only with the

corresponding protograph. It is further discussed in subsection 7.3, where a more subtle

situation for other values of r and v is also sketched.

To interpret ∆T b
k(0, γ) geometrically (for k = 3 − v, 3), for a given elementary graph

with the maximal number hrv of horizontal lines, let us fix the positions of the end-points

of the latter lines (involved into the S(4)−reattachments) and ,when v = 1, the value

of t
(γ)
2 . In view of the constraints (4.2), it leaves only the possibility to perform parallel

transport of each of the n − hrv non-horizontal lines of the graph. Correspondingly, from

23Recall that the sets Ω̃jrv and Srv are introduced in the end of subsection 4.2.4.
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figures 5b, 8a-c and 9a-c, we note that the intervals ∆τq(k) are completely fixed for those

k which label the hrv − v horizontal lines endowed with the individual R̄−1
b −dressing. On

the other hand, the value of each of the n−hrv remaining intervals ∆τq(k), associated with

the dressing of the non-horizontal lines, varies when one implements an admissible parallel

transport of the kth non-horizontal line (with k ∈ Ω̃jrv/Srv). In turn, it implies that, with

each of the latter n−hrv intervals ∆τq(k), one necessarily associates the following adjacent

interval ∆τ
q(k)+2ω

(γ)
k

−1
(with 2ω

(γ)
k − 1 = ±1) such that 0 < q(k) + 2ω

(γ)
k − 1 < n + 2,

(i.e., ∆T b
k(fk, γ) ∩ ∆T a

0 = ∆T b
k(fk, γ) ∩ ∆T a

2+n = 0, ∀k ∈ Ωjrv). Being not spanned by

R̄−1
b −copies of the lines of the graph (i.e., q(p) 6= q(k) + 2ω

(γ)
k − 1 for ∀k ∈ Ωjrv/Srv, ∀p ∈

Ωjrv, ∀γ), this adjacent interval is bounded from one side by the appropriate end-point of

the kth non-horizontal line. The coordinate of the latter end-point is equal to τ
q(k)+ω

(γ)
k

so

that the parameter ω
(γ)
k is equal to 0 and 1 when thus introduced interval ∆τ

q(k)+2ω
(γ)
k

−1

is located respectively to the left and to the right with respect to ∆τq(k). We refer to

subappendix B.1 for more details.

Given the geometrical interpretation of ∆T b
k(0, γ), the emphasized above cancellations

(between the amplitudes (5.1)) result, for any admissible {fk}−assignment, in the impor-

tant completeness condition fulfilled by the n − v =
∑

k∈Ω2rv
1 intervals24 ∆T b

k(fk, 1):

∑

k∈Ω2rv

∆T b
k(fk, 1) = T − ∆T a

0 − ∆T a
n+2 ,

∑

k∈Ω2rv

fk = 2 + r − 2v , (5.7)

where each ∆T b
k(fk, 1) is spanned by the end-points of the R̄−1

b −copies. As it will be

verified in subsection 7.2, in a given rv−protograph these copies are associated with the

kth line of the corresponding j = 2 elementary diagram,

To explain the meaning of eq. (5.7) (to be verified in subappendix B.1), we first note

that the residual time-interval T−∆T a
0 −∆T a

n+2 results from the overall temporal domain T

after the exclusion of its left- and rightmost segments ∆T a
0 and ∆T a

n+2 which (entering the

factor (5.5)) are spanned by the end-points of the R−1
a −copies. Also, the n−v open intervals

∆T b
k(fk, 1) are mutually non-overlapping, ∆T b

k(fk, 1) ∩ ∆T b
q (fq, 1) = 0 for ∀k 6= q, which

means that q(p) 6= q(k) + 2ω
(1)
k − 1 ∀k ∈ Ω2rv/Srv, ∀p ∈ Ω2rv. Then, the completeness

condition (5.7) geometrically implies therefore that, once a particular rv−protograph is

fully dressed, the entire residual time-interval is covered by the n− v = 3 + r− v mutually

non-overlapping intervals ∆T b
k(fk, 1). Examples are described by figures 5c (with r = v =

0), 8f (with r = v − 1 = 0), and 9f (with r = v = 1).

On the other hand, in the evaluation of the individual effective amplitudes (5.1), the

sum in the l.h. side of eq. (5.7) is replaced by the sum
∑

k∈Ωjrv
∆τq(k) < T −∆T a

0 −∆T a
n+2

which generically is less than the residual time-interval. In turn, this inequality follows

from the fact that the number n + 1 of the relevant elementary intervals ∆τk (the residual

interval is decomposed into so that
∑n+1

i=1 ∆τi = T −∆T a
0 −∆T a

n+2) is always less than the

number n − v =
∑

k∈Ω2rv
1 of the lines involved into the fk = 1 dressing (5.6). Examples

are presented in the j = 2 case by figures 5b, 8c, and 9c.

24One is to fix γ = 1 owing to the j = 2 option of eq. (4.1).
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Finally, for the purposes of subsection 6.1, in the v = 1 cases it is convenient to define

both ω
(γ)
k and ∆T b

k(fk, γ) not only for j = 2 but for j = 1 as well. As it is verified in

subappendix B.1, the extension is fixed by the prescription:25 ω
(γ)
2 |j=1 = ω

(1)
4−γ |j=2 with

γ = 1, 2, while ∆T b
k(fk, γ) is to be defined by the same eq. (5.7).

It is also noteworthy that, together with the γ−dependence of t
(γ)
p introduced in

eq. (5.4), the γ−dependence of the auxiliary parameter ω
(γ)
k is the only source of the

γ−dependence of the effective amplitude Z
(γ)
jrv(·) in the fjv = 2 case (see subsection 7.1)

associated with the elementary graphs in a S(4)−multiplet with a given γjrv−assignment.

In turn, the S(4)−symmetry of the dressing of the elementary graphs guarantees that

(as well as in the case of t
(γ)
p ) the pattern of ω

(γ)
k is the same for all members of each

S(4)−multiplet.

6. The structure of the effective amplitude Ṽ
(n)
Uθ(1)({yk})

The convenient representation (6.1) of the factor Ṽ
(n)
Uθ(1)(·), describing a given 2nth order

elementary graph together with the entire its R̄−1
b −dressing, can be deduced from the

integral representation of the elementary 2n−point function (2.10) through the simple

prescription. For this purpose, the product of the concise exponential factors (6.3) is to be

included under the integrand of such representation of the function (2.10) that generalizes

eq. (2.5). In subsection 6.2, we present a brief verification that this prescription matches

the result of the appropriate application of the n − v replacements (5.6) with fk = 1.

6.1 The R̄−1
b −deformations of the elementary 2n−point functions

Let us introduce the effective functions Ṽ
(n)
Uθ(1)({yk}) in a way that makes manifest the

relations between those functions which are parameterized by the elementary graphs with

a given rv−assignment. For this purpose, we first get rid26 of the n − 2 = r + j − 1

δ(·)−functions (defined by the G = 1 eq. (4.2)), starting with the (r + j − 1)−fold integral

T
∫

−T

dj−1t
(γ)
3 drt

(γ)
4 Ṽ

(n)
Uθ(1)({yk})

∣

∣

∣

γ

jrv
= Jjrv

[

(−1)ω
(γ)
3 −1∂

∂τ
q(3)+ω

(γ)
3

]j−1 [

(−1)ω
(γ)
2 −1∂

∂τ
q(2)+ω

(γ)
2

]v

×

×Ṽ
(γ)
jrv({ai}, {∆τq(k)}), (6.1)

where Jjrv = (−1)v+j−1σ2+r−v/(2πθ)2, ω
(γ)
k = 0, 1 is introduced in subsection 5.3.1 on the

basis of eq. (5.7), and (for the sake of generality) we temporarily formulate the integration

in terms of the relative times (5.4) (rather than x2(·)), postulating that
∫

d0xṼ (y) = Ṽ (y).

25It matches eq. (B.6).
26It is admissible because the effective amplitude (5.1) anyway involves the contour integrals over the 2n

temporal coordinates x2(·) of the lines’ end-points which define the set {yk}. Also, the lines are labeled

in subsection 4.2.4 so that the fourth line, being present only in the r = v = 1 cases, is the R−1
b −copy

of the first line. As for the third line, being present only in the j = 2 cases, it is not involved into the

S(4)−reattachments as well as the second line (present in all cases).
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Then,

Ṽ
(γ)
jrv({ai}, {∆τq(k)}) =

∫

dζdη e
i
“

ηt
(γ)
1 −ζt

(γ)
2

”

C21/θ
Krv(ζ, η, {ai}) ×

×
[

F(α(1)ζ,∆τq(1))
]1−v

F(α(2)η,∆τq(2)) ×

×
[

F(α(3)TCij
(η, ζ),∆τq(3))

]j−1 [

F(α(1)ζ,∆τq(4))
]r

, (6.2)

with27 α(k), yk, Cij , and t
(γ)
p being given by eqs. (3.7), (2.9), (2.11), and (5.4) respectively,

while

K̃rv(ζ, η, {ai}) = |a1R + ζ| |a2R + η|1−v|a4R + α(1)ζ|r , y1
k = akR ,

F(η,∆τq(k)) = exp
(

−σ|R + η|∆τq(k)

)

, (6.3)

where ∆τq(k) is the same k → q(k) option of the time-interval (5.3) as in the fk = 1 variant

of eq. (5.6), and

TCij
(η, ζ) = (C31/C21)η − (C32/C21)ζ , (6.4)

with |C21| = 1.

Next, eq. (6.1) is to be augmented by the r+j−1 constraints (imposed by thus resolved

δ−functions of eq. (4.2)) that results in the relations

(j − 1)
(

t
(γ)
3 − TCij

(t
(γ)
2 , t

(γ)
1 )

)

= 0 , r
(

t
(γ)
1 − α(1)t

(γ)
4

)

= 0 , (6.5)

where, the second condition yields (when r = 1) the implementation of the general con-

straint (3.6), while the first one (imposed when j = 2) merely reformulates the condi-

tion (4.3) (to be interpreted geometrically in appendix B). It also noteworthy that the r.h.

side of eq. (6.1) depends on γ only through the γ−dependent quantities ω
(γ)
p together with

the γ−dependent decomposition (5.4) of the parameters t
(γ)
1 and t

(γ)
2 entering eq. (6.2).

Finally, by construction of ω
(γ)
k = 0, 1 (geometricall interpreted in subsection 5.3.1), in

the r.h. side of eq. (6.1) the partial derivative ∂/∂τ
q(p)+ω

(γ)
p

acts only on the pth factor (6.3)

(with p = 3−v, 3) of the integrand in the expression (6.2). In consequence, these derivatives

merely insert, under the integrand, the r + j − 1 factors −σ|R + Gp(ζ, η)| entering the

exponent of eq. (6.3):

[

(−1)ω
(γ)
3 −1∂

∂τ
q(3)+ω

(γ)
3

]j−1 [

(−1)ω
(γ)
2 −1∂

∂τ
q(2)+ω

(γ)
2

]v

−→ (−σ)j−1+v|R + TCij
(η, ζ)|j−1|R + η|v , (6.6)

where we have used that α(2) = 1 when v = 1, while α(3) = 1 when j = 2. A formal proof

of eq. (6.6) is sketched in appendix B

27Actually, the quantities α(k) ≡ α(k)({ak}), Cij ≡ Cij({ak}), and t
(γ)
p ≡ t

(γ)
p ({ak}) implicitly depend (see

appendix D) on the set {ak} of the variables introduced after eq. (4.4).
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6.2 Relation to the elementary 2n−point functions

Before we discuss how to reinterpret the partial integrand of the effective function (6.1) in

compliance with the replacement (5.6), the intermediate step is to establish the relation be-

tween the latter function and its counterpart associated with the corresponding elementary

graph. Also, we point out a preliminary indication of the relevance of the parameterization

in terms of the protographs.

Once the replacement (6.6) is performed, the general rule states that, for any admis-

sible n = 1 + j + r, the integral representations of a given elementary 2n−point function

V
(n)
Uθ(1)({yk}) can be deduced from the corresponding effective one Ṽ

(n)
Uθ(1)({yk}) through the

replacement

F(·,∆τq(k)) −→ 1 , ∀k =⇒ Ṽ
(n)
Uθ(1)

({yk}) −→ V
(n)
Uθ(1)

({yk}) , (6.7)

with F(·) being defined by eq. (6.3). In particular, (provided C12 = −1) the reduced

option (6.7) of the r = v = j − 1 = 0 implementation of the function (6.1), being asso-

ciated with the diagrams of figure 1, assumes the form of integral representation of the

fk(z) → D22(z), k = 1, 2 implementation of the star-product (2.5), where the propagator

D22(z) is introduced in eq. (2.3). It is manifest after the identifications: ζ → ξ1
1 , η → ξ1

2 .

Correspondingly, the kth factor (F(·,∆τq(k)) − 1) accumulates the contribution of all ad-

missible R̄−1
b −copies of the kth line so that the interval28 ∆τq(k) is spanned by the temporal

coordinates of the upper (or, equivalently, lower) end-points of the latter copies.

Altogether, in thus reduced eq. (6.1) the integral representation V
(n)
Uθ(1)({yk}) of a

given 2nth order elementary graph includes, besides the exponential factor ei(ηt1−ζt2)C21/θ

(inherited from eq. (2.5)) and the G = 1 product (4.2) of n − 2 different δ(·)−functions,

the product

K̃n+2(ζ, η,R) =

4
∏

i=1

|aiR + Gi(ζ, η)|wi , Gk(ζ, η) = b̃kζ + c̃kη , (6.8)

composed of n = 1+ j + r factors |aiR+Gi(ζ, η)| each of which represents (when29 wi 6= 0)

the ith propagator of the latter graph so that w1 = w2 = 1, w3 = j−1 = 0, 1, w4 = r = 0, 1

with
∑4

i=1 wi = n. Here, ak is defined in eq. (6.3), b̃q, c̃q = 0,±1, while R is defined in

the footnote prior to eq. (4.4), and 2 ≤ n ≤ 4. In turn, it is the K̃rv(·)−part (6.3) of

K̃n+2 which, being associated with the 2+r−v lines involved into the S(4)−reattachments

(when ak assumes both of the admissible values), refers to the protographs. The remaining

v+ j−1 lines, corresponding to the fk = 0 option of the replacement (5.6), are not affected

by the reattachments so that the corresponding ak are equal to unity which matches the

ak = 1 pattern of the exponents (6.3) necessarily associated with all these lines via the

replacement (6.6).

In conclusion, it is routine to convert the inverse of the prescription (6.7) into the

composition of the replacements (5.6). In view of eq. (6.6), the general pattern (6.1) is

28It is noteworthy that, underlying the solvability of the problem, the local in ∆τq(k) pattern of the

factor (6.3) is traced back to the specific constraints (3.6) imposed by the perturbative amplitudes (2.10).
29I.e., for i ∈ Ω̃jrv, with the set Ω̃jrv being introduced in subsection 4.2.4.
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such that any particular effective 2n−point function Ṽ
(n)
Uθ(1)({yk}) can be deduced from the

associated elementary one through the corresponding option of the replacement

4
∏

k=1

|akR + Gk(ζ, η)|wk −→

4
∏

k=1

|akR + Gk(ζ, η)|wk e−σvk |R+Gk(ζ,η)α(k)|∆τq(k) , (6.9)

where v1 = 1 − v = 0, 1, vk = wk, for k = 2, 3, 4 (with vk 6= 0 only when k ∈ Ωjrv,

where Ωjrv is introduced in subsection 4.2.4) so that
∑4

k=1 vi = n− v. In turn, it matches

the pattern of eq. (6.2). Then, it takes a straightforward argument to verify that the

substitution (6.9) is indeed equivalent to the fk = 1 prescription (5.6) applied, with the

identification α(4) = α(1), to the corresponding Ωjrv−subset of the n − v perturbative

propagators.

7. Integral representation of the effective amplitudes

At this step, we are ready to obtain the explicit form of the amplitude Zrv(Ā, θ̄−1)

which, being introduced in eq. (5.2), defines the decomposition (1.8) of the G = 1 term

< W (¤) >
(1)
Uθ(1) of the 1/N expansion (1.4). For this purpose, we first put forward the

general representation (7.1) of the individual effective amplitudes (5.1) which, being pa-

rameterized by the corresponding elementary graphs, are evaluated non-perturbatively both

in g2 and in θ. The latter amplitudes arise when the 2n−point function Ṽ
(n)
Uθ(1)({yk}), being

multiplied by the factor (5.5), is integrated over the n pairs of the relative coordinates (2.9)

(defining the set {yk}), all restricted to the contour C = ¤.

Then, building on this representation, the superposition (5.2) of Z
(γ)
jrv(·) is evaluated

collecting together the contributions associated with all the elementary graphs endowed

with the same rv−assignment. In turn, the specific cancellations, taking place between

the different terms of the superposition, support the pattern of the relevant collective

coordinates. In particular, it verifies the representation of Ṽ
(n)
Uθ(1)

(·) (discussed in subsec-

tion 5.3.1) formulated in terms of the properly dressed protographs. We also clarify the

relation between the latter dressing and the structure of the collective coordinates.

7.1 General pattern of the individual effective amplitudes

Synthesizing the factors (5.5) and (6.1), one concludes that the individual effective ampli-

tudes (5.1) assume the form

(−1)
P

l∈Srv
al Z

(γ)
jrv({ak}, Ā, θ̄−1) = Ā2+hrv

∫

dn+2τ̄ e−Ā(∆τ̄0+∆τ̄n+2)

[

(−1)ω
(γ)
3 −1∂

∂τ
q(3)+ω

(γ)
3

]j−1

×

×

[

(−1)ω
(γ)
2 −1∂

∂τ
q(2)+ω

(γ)
2

]v

V
(γ)
jrv({ai}, {∆τ̄q(k)}), (7.1)

where the sum in the l.h. side runs over the labels l of the 2 + r − v lines involved into

the S(4)−reattachments in the first relation of eq. (5.2) (with the set Srv being specified
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in the end of subsection 4.2.4), and we introduce the compact notation

τ̄m≤1
∫

0≤τ̄k≤τ̄k+1

m
∏

l=1

dτ̄l . . . ≡

∫

dmτ̄ . . . , (7.2)

for the integrations over the m = n + 2 ordered times τ̄j , and, for a rectangular contour

C = ¤ of the size R × T , it is convenient to utilize the change of the variables

τk = T τ̄k , tk = T t̄k , ζ = Rζ̄ , η = Rη̄ , (7.3)

which introduces the dimensionless quantities τ̄k (with ∆τ̄k−1 = τ̄k − τ̄k−1 ≥ 0), η̄, ζ̄, and

t̄k so that R4+r−vVjrv({ai}, {∆τ̄q(k)}) = Ṽjrv({ai}, {T∆τ̄q(k)}). In particular, this change

makes it manifest that, besides the dependence on {ai} and θ̄ = σθ, the considered effective

amplitudes are certain functions of the dimensionless area of the rectangle C

Ā = σA(C)
∣

∣

∣

C=¤

= σRT (7.4)

rather than of R and T separately.

Note also that in the r.h. side of eq. (7.1) the m = n + 2 species of the

dτ̄j−integrations reproduce,30 according to the discussion of subsection 5.1, the 2n−fold

contour-integral (5.1) which runs over the time-coordinates dx2(sl) and dx2(s′l) constrained

by the G = 1 product (4.2) of the δ(·)−functions. Correspondingly, this transformation

of the measure has the Jacobian which is equal to (−1)n
−

jrv , where n−
jrv and n+

jrv denote

the numbers of the line’s end-points attached, for a given elementary graph, respectively

to the lower and upper horizontal side of the rectangle C = ¤ so that

(−1)n
−

jrv =
∏

i∈Ω̃jrv

(−1)ai ,
1

2
(n+

jrv + n−
jrv) = njrv ≡ n =

∑

k∈Ω̃jrv

1 , (7.5)

where ak is defined in eq. (6.3), while the set Ω̃jrv is specified in the end of subsection 4.2.4.

In turn, to justify the {ak}−dependent sign-factor in the l.h. side of eq. (7.1), it remains

to notice that
∑

k∈Ω̃jrv
ak = v + j − 1 +

∑

l∈Srv
al since ak = 1 for ∀k ∈ Ω̃jrv/Srv.

7.2 Derivation of the combinations Zrv(Ā, θ̄−1)

The effective amplitudes (7.1), parameterized by the individual elementary graphs, are still

intermediate quantities. To say the least, for generic Ā, they are singular for θ̄−1 → 0. To

arrive at amplitudes which are already continuous in θ̄−1 in a vicinity of θ̄−1 = 0, our aim is

to evaluate the combinations (5.2) of the latter amplitudes entering the decomposition (1.8).

Then, to reveal the cancellations between different terms of the sum (5.2), in the r.h.

side of eq. (7.1) one is to perform v + j − 1 integrations to get rid of the corresponding

number of the partial derivatives (employing that 0 < q(k) < n + 2 for ∀k = 1, . . . , n). In

30To make use of eq. (6.1), we utilize the fact that, owing to the G = 1 pattern (4.2), the integrations
R

dj−1t3 drt4 can be reformulated as r + j − 1 integrations with respect to the temporal coordinates x2(·)

of those end-points which are not involved into the definition of τk.
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appendix B, it is shown that, matching the prescription (5.6) formulated in subsection 5.3.1,

a straightforward computation yields

Zrv(Ā, θ̄−1) = Ā2+hrv
∑

{al}rv

(−1)
P

l∈Srv
al

∫

d2+hrv τ̄ e−Ā(∆τ̄0+∆τ̄2+hrv ) V2rv({ak}, {∆T̄ b
k}) ,

(7.6)

where the sum over al is the same as in eq. (5.2), Ṽ2rv(·) ≡ Ṽ
(1)
2rv(·) is defined in eq. (6.2),

and we have omitted the subscript γ = 1 since, in view of eq. (4.1), γ assumes the single

value for j = 2 irrespectively of the values of r and v. Note that, in the exponent, ∆τ̄n+2

is replaced by ∆τ̄2+hrv
≡ T−1∆T a

2+hrv
while, in the quantity V2rv(·, ·), the set {∆τ̄q(k)} is

superseded by {∆T̄ b
k} ≡ {∆T̄ b

k(fk, 1)}, where the intervals ∆T̄ b
k(fk, 1) = T−1∆T b

k(fk, 1),

being constrained by the condition (5.7), are introduced in eq. (5.7). Altogether, omitting

the subscripts a and b, the relevant 3 + hrv intervals ∆T̄i = τ̄i+1 − τ̄i ≥ 0 are expressed

through 2 + hrv ordered quantities τ̄i characterized by the m = 2 + hrv option of the

measure (7.2).

Finally, according to appendices C and D, the r.h. side of eq. (7.6) can be rewritten

in the form

Zrv(Ā, θ̄−1) = Ā2+hrv

∫

d2+hrv τ̄

+∞
∫

−∞

dζ̄dη̄ ei(η̄t̄1−ζ̄ t̄2)Ā/θ̄ Krv(ζ̄, η̄) Yrv(ζ̄ , η̄, {∆τ̄k}), (7.7)

where t̄p ≡ t̄
(1)
p , p = 1, 2,

Yrv(·) = e−Ā(∆τ̄0+∆τ̄2+hrv ) exp
(

−Ā
[

(1+r−v)|1−ζ̄|∆τ̄3+|1+η̄|∆τ̄1+v+|1−ζ̄ + η̄|∆τ̄2−v

])

,

(7.8)

Krv(·) is given by eq. (1.12), and the sum over {ek} supersedes the one over {al}rv (com-

bining four different implementations Zrv({ak}, ·)) so that the dressing-weight Yrv(·) is

manifestly S(4)−invariant, i.e., {ek}−independent. For the particular {ak}−assignments,

Zrv({ak}, ·) is diagrammatically depicted in figures 5c (a1 = a2 = 0), 8f (a1 = 0), and

9f (a1 = a4 = 0) which are associated with r = v = 0, r = v − 1 = 0, and r = v = 1

respectively.

Let us also note that the representation (7.7) readily allows to demonstrate that, for

∀Ā > 0, Zrv(Ā, θ̄−1) is indeed continuous in θ̄−1 in a vicinity of θ̄−1 = 0. This property,

implied in the transformation of eq. (1.8) into eq. (1.10), will be explicitly derived in [25].

7.3 A closer look at the pattern of the collective coordinates

In conclusion, let us clarify the following subtlety concerning the pattern of the collective

coordinates relevant for the dressing of the rv−protograph. The point is that, in the

v = 1 eq. (7.7), both the measure d2+hrv τ̄ and the relative time t̄2 ≡ t̄
(γ)
2 can not be fully

determined only on the basis of the configuration of the rv−protograph itself (postulated

to be constrained, in the r = 1 case, by the second of the conditions (6.5)). The general

reason is traced back to the fact that the v = 1 protographs are not of genus-one and,

therefore, their dressing necessarily encodes certain structure inherited from the associated

j = 2 elementary diagrams.
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In consequence, the above measure includes integration over one more parameter31

τ̄2+r in addition to the 2hrv − r = 2− v + hrv parameters which are directly identified (see

appendices B and A for the details), with the independent temporal coordinates of the

end-points of the protographs’ lines:

∫

d2+hrv τ̄ . . . =

∫

d2−v+hrv τ̄

∫

dv t̄2 . . . , (7.9)

where we have used that t̄2 = τ̄2+r − τ̄1 (with τ1 = x2(s′1) as it is depicted in figures 8f and

9f). Then, as it is discussed in appendix A, the presence of τ2+r is tightly related to the

first of the constraints (6.5) fulfilled by the three parameters tp, p = 1, 2, 3. In turn, as it

is sketched in appendix B, the latter constraints underlie the completeness condition (5.7)

for ∀r, v.

Note also the reduction
∫

d2+nτ̄ . . . →
∫

d4+r−v τ̄ . . . of the relevant measure, formal-

ized by the transition from the combination of the individual amplitudes (7.1) to eq. (7.6),

entails the relevant fk = 0 replacements (5.6) applied to the j = 2 eq. (7.1). Indeed, the

latter replacements result after such integration over n− (2+r−v)|j=2 = v +1 parameters

τ
q(p)+ω

(γ)
p

(with p = 3 − v, 3), in the process of which the corresponding intervals ∆τq(k)

vary in the domains [0,∆T b
k (0, γ)] (see appendix B for more details).

8. The large θ limit

At this step we are ready to put forward the prescription (8.1) to implement the large

θ limit in eq. (7.7). By virtue of the 1/θ2 factor in front of the sum in the r.h. side

of eq. (1.10), the asserted large θ scaling < W (¤) >
(1)
Uθ(1)∼ θ−2 is a consequence of the

important property of the combinations Zrv(Ā, θ̄−1). For any finite Ā 6= 0, the relevant

large θ limit (1.9) can implemented directly through the substitution

ei(η̄t̄1−ζ̄t̄2)Ā/θ̄ −→ 1 =⇒ Zrv(Ā, θ̄−1) −→ Zrv(Ā, 0) , (8.1)

to be made in the integrand of the representation (7.7) of the quantity Zrv(Ā, θ̄−1) that

replaces the latter quantity by its reduction Zrv(Ā, 0). In turn, provided eq. (1.7) is valid,

the prescription (8.1) yields the integral representation (1.10) for the next-to-leading term

of the 1/θ expansion (1.3) (with < W(¤) >
(1)
N = 0).

The self-consistency of the deformation (8.1) is maintained provided Zrv(Ā, θ̄−1) is

continuous in θ̄−1 in a vicinity of θ̄−1 = 0. Roughly speaking, for Ā 6= 0 the latter property32

is valid since this deformation does not violate the convergence of the (m+2)−dimensional

integral over τ̄k, ζ̄, and η̄ defining the representation (7.7) of Zrv(Ā, θ̄−1), where m =

2 + hrv. To demonstrate the convergence, it is convenient first to get rid of the explicit

m−dimensional ordered integration over τ̄j . For this purpose, it is useful to perform the

31This parameter supersedes, after the two integrations (over τ
q(p)+ω

(1)
p

with p = 1, 2), the parameter

τ̄3+r defined by eq. (A.4) in the case of the j = 2 amplitude (7.1).
32A rigorous derivation of this property is presented in [25].
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Laplace transformation of Zrv(Ā, θ̄−1) with respect to the dimensionless area (7.4) that

results in

Z̃rv(β, θ̄−1) =

∫ +∞

0
dĀ Zrv(Ā, θ̄−1) e−βĀ . (8.2)

The advantage of this trick is that, in the integral representation of the image Z̃rv(β, θ̄−1),

the τ̄j−integrations can be easily performed using the general relation

m
∏

j=0

1

β + Bj
=

+∞
∫

0

dĀ e−βĀ

τ̆m≤Ā
∫

0≤τ̆k≤τ̆k+1

m
∏

k=1

dτ̆k

m
∏

j=0

exp (−Bj∆τ̆j) , (8.3)

where τ̆j is to be identified with Āτ̄j, while ∆τ̆j−1 = τ̆j− τ̆j−1 with τ̆0 ≡ 0 and τ̆m+1 ≡ Ā. In

particular, in this way one proves that the Laplace image Z̃rv(β, 0) of the large θ asymptote

Zrv(Ā, 0) of the amplitude (7.7) assumes the form (1.11).

Then, the self-consistency of the prescription (8.1) can be reformulated as the require-

ment that Z̃rv(β, θ̄−1) is continuous in θ̄−1 in a vicinity of θ̄−1 = 0. In turn, this property

is traced back to the fact that the double integral (1.11) is convergent for ∀β > 0 which is

verified by a direct inspection.

Also, it should be stressed that, due to the infrared singularities of the propagators,

the prescription (8.1) is not applicable directly to each individual perturbative diagram.

This property may be inferred from the integral representations of the elementary ampli-

tudes given by the reduction (6.7) of the effective amplitudes considered in subsection 6.1.

Actually, even the individual effective amplitudes (7.1) still are not suitable for this pur-

pose either that can be traced back to the violation of the completeness condition (5.7).

It takes certain specific cancellations between the latter amplitudes that, resulting in the

latter condition, makes the substitution (8.1) applicable to the combinations (7.7). We

shall continue the discussion of this issue in [25].

9. Conclusions

In the present paper we obtain the exact integral representation (1.8) of the next-to-leading

term < W (¤) >
(1)
Uθ(1)

of the 1/N expansion (1.4) of the average in the D = 2 gauge

theory (1.2). It provides the rigorous non-perturbative33 computation made, from the first

principles, in the noncommutative gauge theory.

The Laplace image (8.2) of the large θ asymptote of < W (¤) >
(1)
Uθ(1) assumes the

particularly concise form (1.10). In turn, the latter asymptote is argued to be directly

related (1.7) to the next-to-leading term of the 1/θ expansion (1.3) of < W (C) >Uθ(1).

It is noteworthy that the considered asymptote reveals the power-like decay which is in

sharp contrast with the exponential area-law asymptote (1.6) valid in the leading order of

the 1/N− (or, equivalently, 1/θ−) expansion. Furthermore, as the origin of the power-

like decay can be traced back to the (infinite, in the limit θ → ∞) nonlocality of the

33It is specifically important in the large θ limit (1.9), where the truncated perturbative series of <

W (C) >
(G)
Uθ(1) is shown [14] to result in the false asymptotical θ−scaling that is supposed to take place not

only for D = 2 but for D = 3, 4 as well.
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star-product, similar decay is supposed to persist for all G ≥ 1 subleading34 terms <

W (C) >
(G)
Uθ(1) of the large θ 1/N expansion.

In consequence, it precludes an apparent extension of the stringy representation of the

latter expansion in the spirit of the Gross-Taylor proposal [38] formulated for the commu-

tative D = 2 gauge theories. Another subtlety, concerning possible stringy reformulation

of the noncommutative observables, is that the noncommutative gauge invariance is also

maintained [26] for certain combinations of the Wilson lines associated with the open con-

tours C = Cxy with x 6= y. Nevertheless, the optimistic point of view could be that all

these subtleties may suggest a hint for a considerable extension of the stringy paradigm

conventionally utilized in the context of two-dimensional gauge (or, more generally, matrix)

systems.

As the developed here methods are general enough, we hope that our analysis makes

a step towards a derivation of an arbitrary two-dimensional average < W (C) >Uθ(1). Most

straightforwardly, they can be applied to consider the G = 1 term of the average (2.2) for

a generic rectangular contour C = ¤ with a nontrivial number n ≥ 2 of windings. E.g., it

would be interesting to adapt the pattern (7.1) to the case when n >> 1 and estimate its

asymptotical dependence on n. Also, the G ≥ 2 terms < W (¤) >
(G)
Uθ(1) could be in principle

evaluated akin to the G = 1 case that is expected to lead to a generalization of eq. (7.1).

In particular, we expect that there should be 2G parameters ζq, ηq with q = 1, . . . , G, while

the factor in front of the integral becomes Ām/(σθ)2G.

More subtle open question is to generalize our approach to a (non-self-intersecting)

contour of a generic geometry. In the commutative θ = 0 case, the crucial simplification

takes place by virtue of the invariance of the partition function under the group of (sim-

plectic) area-preserving diffeomorphisms which guarantees that < W (C) >U(1) depends

only on the area A(C) irrespectively of the form of C. On the other hand, the repre-

sentation (2.2) does not make manifest if there is a symmetry that relates the averages

< W (C) >Uθ(1) with different geometries of the contour C. Furthermore, the lowest order

perturbative computation [14] indicates that the simplectic invariance may be lost in the

non-commutative case. Nevertheless, the explicit A(¤)− (rather than twofold R− and T−)

dependence of the derived G = 1 term < W (C) >
(1)
Uθ(1) looks like a promising sign. Also,

it would be interesting to make contact with the noncommutative Loop equations [28, 33]

which might be an alternative approach to the above problems.

Finally, among other new questions raised by the present analysis, we would like to

mention the following one important in the context of the D = 4, 3 noncommutative Yang-

Mills theory (1.2). We conjecture that in this case the minimal area-law asymptote, pre-

sumably valid for a generic closed fundamental Wilson loop in the N → ∞ limit, fades

away at the level of the subleading G ≥ 1 terms similarly to what happens in the D = 2

case.

34Contrary to the G ≥ 1 terms, the leading G = 0 term is insensitive to the star-product structure that

matches its θ−independence (1.6).
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A. The {∆τq(k)}-assignment

By virtue of the S(4) ⊗ S(2)−symmetry implemented in section 4, there is the fol-

lowing short-cut way to introduce the prescription that fixes the {∆τq(k)}−assignment

(entering eq. (5.6)) unambiguously for all the effective amplitudes collected into the

S(4)⊗S(2)−multiplets. For all inequivalent values of j, r, and v, we first fix the prescrip-

tion35 for a single graph in a particular S(4)⊗S(2)−multiplet with given γjrv−assignment.

Then, it is verified that the pattern of the prescription is not changed when adapted

to the remaining graphs obtained employing the S(4)−reattachments combined with the

S(2)−reflections.

In turn, given an elementary graph representing such a multiplet, there are two steps

to implement the {∆τq(k)}−assignment. The first step, discussed in the present appendix,

is to perform such a change of the variables that replaces 2n temporal coordinates36 x2(sl)

and x2(s′l), constrained by G = 1 eq. (4.2), by n + 2 independent parameters τi. At the

second step, one is to determine the function q(k) : k → q. The latter step is established

in appendix C.

A.1 The r = v = 0 case

Both of the steps are most straightforward in the case of the r = v = 0 multiplets when

the realization of the two relevant symmetries of the assignment in question is routine as

well. Presuming that sk ≥ s′k for ∀k, the first step can be formalized by the prescription

x2(s′k) = τk , x2(sk) = τk+j+1 , k = 1, 2 , (j − 1)
(

x2(s′3) − τ3

)

= 0 , (A.1)

where xµ(s′k), xµ(sk) are the end-points of the left (k = 1) and right (k = 2) lines in figure

1a (j = 1) and 2c (j = 2).

A.2 The v = 1 cases

Concerning the v = 1 cases,37 consider first the j = 1 graphs which, being depicted by

solid lines in figures 8a, 8b and 9a, 9b, are associated with r = 0 and r = 1 respectively,

where γ = 1 and γ = 2 are assigned to figures 8a,9a and 8b, 9b correspondingly. In all

35In certain cases, this assignment may be imposed in a few alternative ways without changing the

corresponding effective amplitude. The prescription fixes this freedom in the S(4)−invariant way.
36Recall that l labels the lth line of a given graph, s′l < sl for ∀l, and the proper-time parameterization

goes clockwise starting with the left lower coner of C = ¤.
37Recall that, in the r = v − 1 = 0 case, one is to restrict the admissible positions of the lower end-points

of those j non-horizontal lines which are not involved into the S(4)−reattachments. It is fixed by eq. (C.4).
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figures, τ1 and τ4+r should be identified respectively with the temporal coordinates of the

leftmost and rightmost end-points of the elementary graph, belonging to 1 + r solid lines

(defining the associated protograph). Next, the remaining 1 + r end-points of the latter

lines can be as well directly identified with the corresponding parameters τi so that it can

be summarized by equations

x2(s′1) = τ1 , x2(s1)δ1γ + x2(s′4)δ2γ = τ4+r , x2(s2) = τ1+r+γ , δ2r ·
(

x2(s4) − τ2

)

= 0 ,

(A.2)

where δnm denotes the standard Kronecker delta-function with δnn = 1 and δnm for ∀n 6= m.

For a given n+2 = 3+j+r, the direct reidentification (A.2) allows to define only n+1

parameters τi. The remaining (n + 2)th parameter τ4+r−γ has to be introduced via the

following procedure which is also used to determined the corresponding interval38 ∆τq(2).

The proposal is to identify τ4+r−γ with the new position
(

x2(s1)δ1γ + x2(s′1)δ2γ

)

+ (−1)γt2 = τ4+r−γ (A.3)

of the lower end-point of the second solid line resulting after the judicious parallel transport

of this line. Namely, the line is transported, until its upper end-point hits the corresponding

end-point of the first solid line, to the right in the γ = 1 case of figures 8a, 9a and to the

left in the γ = 2 case of figures 8b, 9b. Note also that τ̄4+r−γ describes the collective

coordinates defining the measure (7.9).

Turning to the j = 2 case of figures 8c and 9c (both assigned with γ = 1), we first note

that the addition of the extra solid line (compared to figures 8a, 8b and 9a, 9b) results in

the one more delta-function in the G = 1 factor (4.2). In consequence, compared to the

associated j = 1 cases, only a single additional parameter τi is introduced which can be

directly identified with the the temporal coordinate x2(s3) of the lower end-point of this

extra line (which, being non-horizontal, is not involved into the reattachments). As for the

remaining n + 1 = 4 + r parameters τk, they are defined in the way similar to the previous

j = 1 discussion.

Actually, it can be reformulated in the more geometrically clear way. For this purpose,

in all figures, τ1 and τ5+r should be identified correspondingly with the temporal coordinates

of the leftmost and rightmost end-points of the elementary graph depicted by the solid lines.

Additionally, the 2+r end-points (of the latter lines) can be as well directly identified with

the corresponding parameters τi that can be summarized in the form

x2(s′1) = τ1 , x2(s1)δ1γ + x2(s′4)δ2γ = τ5+r ,

x2(s2) = τ4+r , x2(s3) = τ2+r , δ1r

(

x2(s4) − τ2

)

= 0.

In this way, we define the n+1 parameters while the so far missing (n+2)th parameter τ3+r

can be determined through the following procedure utilizing the double parallel transport

which, geometrically, can be visualized the triangle-rule (most transparent in figures 8f and

9f). The proposal is to identify τ3+r with the position

τ1 + t2 = τ3+r (A.4)

38In turn, ∆τq(2) is to be identified with the interval spanned by the lower end-point of the second solid

line in the process of this parallel transport: q(2) = 2 + r.
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where the two lower end-points of the second and the third solid lines coalesce when these

two lines are transported until their upper end-points simultaneously hit the corresponding

end-points of the first (horizontal) solid line. In turn, it implies the algebraical fine-tuning

maintained by the first of the conditions (6.5) which, geometrically, means that (when

properly transported and reoriented) the three vector yk, k = 1, 2, 3, can be combined into

a triangle39 in the a1 = 0 case of figures 8c and 9c.

A.3 The S(4)- and reflection-invariance

Evidently, the proposed algorithm to introduce the {∆τq(k)}−assignment is not changed

after a generic combination of the S(4)−reattachments. Indeed, it readily follows from the

fact that, keeping the temporal coordinates of the end-points intact, they are applied only

to the right- or/and leftmost end-points of elementary graphs.

Concerning the reflection-invariance, consider first the r = v = 0 case. Then the

reflection (interchanging the horizontal sides of the rectangle C) is applied to the two

S(4)−multiplets corresponding to the figures 1a (with j = 1) and 2c (with j = 2). In the

reflection-partners represented by figures 1b and 2d respectively, the time-intervals ∆τ̄k be

associated to the lower horizontal side of C. In the latter two figures, we parameterize the

left and the right horizontal lines by label 1 and 2 correspondingly (so that, in figure 2d, the

remaining non-horizontal line is assigned with the label 3). Introducing the parameters τi

by the same token as previously, it guarantees that the function q(k) is reflection-invariant.

Also, compared to the case of figure 1a and 2c, the figures 1b and 2d can be characterized

via the replacements tp → −tp, Cil → −Cil with p = 1, 2 and i, l = 1, 2, 3. In turn, the

latter replacements follow from the definitions (2.9) and (2.11) which are augmented by the

convention to implement the proper-time parameterization (implying, in particular, that

sl ≥ s′l for ∀l).

Finally, consider the remaining case of the three pairs of the r = v = 1 S(4)−multiplets

(assigned with γ = 1, 2 for j = 1 and γ = 1 for j = 2) which, within a particular pair, are

related through the reflection interchanging the vertical sides of C = ¤.

In each of the latter multiplets it is sufficient to consider the single elementary graph

with the two horizontal lines. E.g., see figures 9g and 9h which are the reflection-partners

of figures 9b and 9c respectively. For concreteness, we restrict40 the discussion to figures

9c and 9h, associating the time-intervals ∆τ̄k to the lower horizontal side of C. In the

latter two figures, we parameterize the left and the right horizontal lines by label 1 and 4

correspondingly. Then, to maintain the reflection-covariance of the algorithm (introduced

in the previous subappendix), in the case of figure 9h one is to perform the additional

change of the variables τ̄k → τ̄n+3−k with k = 1, . . . , n + 2 (possessing the Jacobian equal

to unity) that results in the reidentification ∆τ̄k → ∆τ̄n+2−k applied to k = 0, . . . , n + 2.

(As previously, we require that sl ≥ s′l for ∀l.) This reidentification evidently implies the

transformation q(k) → q(n + 2 − k), provided the labels 2,3 are assigned to the remaining

non-horizontal lines so that C32 → −C32 (while C1p → −C1p for p = 2, 3). In turn, a

39A direct inspection of figure 5b and figures 6 reveals that, with a minor modification, a similar triangle-

rule can be formulated in the v = r = 0 case as well.
40The remaining two pairs, associated with figures 9a and 9b, are handled in a similar way.

– 45 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
9

direct inspection demonstrates that, after this transformation, the function q(k) assumes

the same form as in the case of figure 9c which verifies its reflection-covariance. As for

the splitting (5.4), the reflection-partners can be characterized through the replacements

ti → −ti for i = 1, 2, 3, 4.

B. Justifying eq. (7.6)

To transform the superposition (5.2) into the form of eq. (7.6), in the integral representa-

tion (7.1) of Z
(γ)
jrv(·) one is to first perform (for each v + j − 1 > 0 term) the change of the

variables
∫

d2+nτ̄ . . . −→

∫

d2+hrv τ̄

∫ τ̄qγ (3)+1

τ̄qγ (3)−1

dj−1τ̄qγ(3)

∫ τ̄qγ (2)+1

τ̄qγ (2)−1

dv τ̄qγ(2) . . . (B.1)

that manifestly separates the 2+hrv collective coordinates combined into the measure (7.9),

provided qγ(p) = q(p)+ω
(γ)
p , where ω

(γ)
p = 0, 1 is explicitly constructed in subappendix B.1

so that the prescription, formulated in the end of subsection 5.3.1, is valid. In turn, due to

the presence of the corresponding number of the derivatives in the r.h.side of eq. (7.1), the

remaining v + j − 1 integrations41 (with respect to τ̄qγ(p) ∈ [τ̄qγ(p)−1, τ̄qγ(p)+1]) are readily

performed. The computation is simplified by the fact42 that, by construction of ω
(γ)
p , both

t̄
(γ)
1 , t̄

(γ)
2 and ∆τ̄q(i) are independent of τ̄qγ(p) for ∀i 6= p, ∀p = 3−v, 3, and ∀γ = 1, fjv, while

(−1)ω
(γ)
3 −1∂/∂τ̄qγ(p) can be replaced by ∂/∂∆τ̄q(p) when it acts on the ∆τ̄q(p)−dependent

factor (6.3). In consequence, in the expression (6.2) for Ṽ
(γ)
jrv(·), the dependence on τqγ(p) is

localized in the corresponding k = p implementation of the factor (6.3). Furthermore, the

interval ∆τ̄q(p) varies in the domain [0,∆T̄ b
p (0, γ)] (where T b

p (0, γ) = τqγ(p)+1 − τqγ(p)−1 is

defined in eq. (5.7)) when τ̄qγ(p) spans the domain [τ̄qγ(p)−1, τ̄qγ(p)+1].

Altogether, the amplitude (7.1) can be rewritten in the form which can be obtained

from eq. (7.6) through the replacement

V2rv({ak}, {∆T̄ b
k}) −→

2
∑

j=1

fjv
∑

γ=1





1
∑

τ̆3=0

(−1)τ̆3





j−1 



1
∑

τ̆2=0

(−1)τ̆2





v

V
(γ)
jrv({ai}, {∆τ̄q(k)})

∣

∣

∣

{τ̆p}
,

(B.2)

where sum over τ̆p = (∆T̄ b
p (0, γ)−∆τ̄q(p))/∆T̄ b

p (0, γ) reproduces the sum over the boundary

values of the relevant intervals ∆τ̄q(p), while V2rv(·, ·) ≡ V
(1)
2rv(·, ·) as well as in eq. (7.6).

Next, in the r.h. side of eq. (B.2), there are mutual cancellations (see eqs. (B.5)

and (B.6) below) which, due to the S(4)−invariance of the R̄−1
b −dressing, are main-

tained between the j = 1 and j = 2 terms considered separately for any admissible

{al}−assignment. As a result, survives only the single j = 2 term

V2rv({ai}, {∆τ̄q(k)})
∣

∣

∣

{∆τ̄q(p)=∆T̄ b
p (0)}

= V2rv({ak}, {∆T̄ b
k}) (B.3)

41Recall that these integrations are associated with those lines (of a given elementary graph) which, being

non-horizontal, are not involved into the S(4)−reattachments.
42It is this fact that verifies the prescription (6.6).

– 46 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
9

(with T̄ b
p (0) ≡ T̄ b

p (0, γ)|γ=1) characterized by the condition

∆τ̄qγ(p)−1 = 0 =⇒ ∆τ̄q(p) = ∆T̄ b
p (0, 1), , ∀p = 3 − v, 3 , (B.4)

that reduces the number 2+n of the original variables τ̄i, entering eq. (7.1), to the smaller

amount 2 + hrv associated with eq. (7.7). In consequence, for fixed values of those τ̄k

which define the collective coordinates entering the measure (7.9), it maintains the max-

imal value of
∑3

p=3−v ∆τq(p), where p labels those v + j − 1 lines of a given elementary

graph which, being associated to fk = 0 replacement (5.6), are not involved into the

S(4)−reattachments. In turn, by virtue of the j = 2 constraints (6.5), it supports the

completeness condition (5.7). Altogether, it verifies eq. (7.6).

As for the asserted mutual cancellations, the simplest situation takes place in the

r = v = 0 case when the parameter γ, assuming the singe value (since fj0 = 1 according

to eq. (4.1)), can be safely omitted. Therefore, for each admissible values of a1 and a2

(involved in the v = 0 summation in eq. (7.6)), the fine-tuning takes place between the pairs

of effective amplitudes Zj00({ak}, Ā, θ̄−1) with j = 1, 2. In this case, due to the identity

F(z, 0) = 1 valid for ∀z (as it is clear from the definition (6.3)), the very pattern (6.2) of

Vjrv(·) ensures the relation

V200({ak}, {∆τ̄q(i)})
∣

∣

∣

∆τ̄q(3)=0
= V100({ak}, {∆τ̄q(i)}), (B.5)

so that the reduction ∆τ̄q(k) = 0 converts the 6−set {∆τ̄k} (associated with the j = 2

l.h. side of the identity) into its counterpart (in the j = 1 l.h. side) consisting of the

5 intervals ∆τ̄k. In turn, it proves the inverse of the v = 0 replacement (B.2) and, in

consequence, the v = 0 option of the prescription (5.6) endowed with the {fk}−specification

in compliance with subsection 5.3.1. For the particular case of a1 = a2 = 0, Z00({ak}, ·)

(resulting from the cancellation between Z200({ak}, ·), figure 5b, and Z100({ak}, ·), figure

5a) is diagrammatically depicted by figure 5c. The remaining options of Z00({ak}, ·) are

represented by figures 6a-6c.

Concerning the v = 1 cases, the inverse of the v = 1 replacements (B.2) follow from

the pair of the relations43

V2r1(·, {∆τ̄q(i)})
∣

∣

∣

∆τ̄q(p)=0
= V

(p−1)
1r1 (·, {∆τ̄q(i)})

∣

∣

∣

∆τ̄q(2)=T̄ b
2 (0,p−1)

, p = 2, 3 , (B.6)

V2r1(·, {∆τ̄q(i)})
∣

∣

∣

∆τ̄q(3)=0

∆τ̄q(2)=0
= V

(γ)
1r1(·, {∆τ̄q(i)})

∣

∣

∣

∆τ̄q(2)=0
= 0 , (B.7)

where eq. (B.6) can be deduced essentially by the same token as eq. (B.5) (while eq. (B.7)

is proved in [25]). The only new element is to take into account that, contrary to the

r = v = 0 case (B.5), there are two p = 2, 3 options to implement the j = 2 → j = 1

reduction (of the (6 + r)−set {∆τ̄k} into the corresponding (5 + r)−set) so that the pth

option is associated with the γ = p − 1 implementation of V
(γ)
1r1(·). Geometrically, for the

43In the derivation of eq. (B.6), we utilize that ∆T b
2 (0, γ)|j=1 = ∆T b

4−γ(0, 1)|j=2 provided t
(γ)
2 |j=1 =

t
(1)
4−γ |j=2.
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particular {ak}−assignments, the latter identification is clear from the comparison of the

j = 2 figures 8c and 9c with the j = 1 pairs of the figures 8a, 8b and 9a, 9b respectively. (In

the derivation of this representation of Z
(1)
1r1(·), we also utilize the change of the variables

η̄ → η̄ + ζ̄ ζ̄ → ζ̄ that, in the combination η̄t̄
(1)
1 − ζ̄ t̄

(1)
2 entering the relevant option of

eq. (6.2), replaces t̄
(1)
2 by t̄

(2)
2 .)

Finally, it is possible to diagrammatically visualize the v = 1 replacement (B.2), in the

form similar to the r = v = 0 one. For simplicity, we as previously restrict the discussion

to the case of the {ak}−assignments with a1 = 0 and, when r = 1, a4 = 0. Then, observe

first that (in the γ = 1 case) the relation (B.7) implies the equivalence of the effective

amplitudes associated with figures 8a, 9a and 8d, 9d correspondingly. Next, the p = 3

variant of the relation (B.6) guarantees that the superposition Z
(2)
1r1({ak}, ·) +Z

(1)
2r1({ak}, ·)

is diagrammatically represented by figures 8e and 9e when r = 0 and r = 1 respectively. As

for Zr1({ak}, ·), being depicted in figures 8f and 9f when r = 0 and r = 1 correspondingly,

it results after the residual cancellation which takes place, by the same token as in the

r = v = 0 case, between effective amplitudes of figures 8e (9e) and 8d (9d).

B.1 The choice of the {ω
(γ)
k }-assignment

It remains to introduce the appropriate set of the parameters ω
(γ)
k , where k = 3 − v, 3

labels those n − hrv = v + j − 1 lines of the elementary graph which are not associated

with the corresponding protograph, i.e., k ∈ Xjrv ≡ Ω̃jrv/Srv (where the sets Ω̃jrv and

Srv are introduced in the end of subsection 4.2.4). For this purpose, we propose the

following algorithm. First, we observe that the parameters τ̄qγ(k) (k = 3 − v, 3, qγ(p) =

q(p) + ω
(γ)
p ) represent the temporal coordinates which remain dynamical when one fixes

both the positions of the end-points of the corresponding protograph’s line and, in the

v = 1 case, an admissible value of t
(γ)
2 . In compliance with appendix A, for v + j − 1 > 0 it

leaves variable exactly v + j − 1 independent temporal coordinates of either upper (when

v = 0) or lower end-points of the v + j−1 lines labeled by k ∈ Xjrv. Correspondingly, each

of thus introduced parameters τ̄qγ(k) is associated with the two adjacent intervals ∆τ̄qγ(k)−i

with i = 0, 1 so that
∑1

0 ∆τ̄qγ(k)−i = ∆T b
p (0, γ). Then, it is a matter of convention to

choose one of the two possible values of i = iγ(k) in order to identify q(k) = qγ(k) − iγ(k)

for a given γ. Having fixed this freedom44 according to the prescription of appendix C,

one is led to the identification ω
(γ)
k = iγ(k). Given this prescription, one obtains (in the

S(4)−invariant and reflection-covariant way in the sense of subappendix A.3) that ω
(1)
3 = 0

for r = v = j − 2 = 0, ω
(γ)
2 = γ − 1 for v = j = 1 (and ∀r = 0, 1), while ω

(1)
p = 3 − p for

v = j − 1 = 1 (and ∀r = 0, 1). Also, it supports the prescription, formulated in the end of

subsection 5.3.1.

Next, by construction, thus introduced n− v intervals ∆T b
k(fk, γ) meet the important

constraint (justified by a direct inspection of the relevant elementary graphs): these in-

tervals are mutually non-overlapping. Furthermore, in the j = 2 case, the very number

44A direct inspection of the elementary graphs verifies that this freedom is absent for the remaining hrv

lines which, being endowed with the R̄−1
b −dressing, are assigned with k ∈ Srv = Ωjrv/Xjrv, while fk = 1

in the sence of eq. (5.7), i.e., ∆T b
k (1, γ) = ∆τ̄q(k) for k ∈ Srv.
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n − v of the intervals ensures that they comply with the completeness condition (5.7).

(Among the n + 1 intervals ∆τ̄i, comprising the residual temporal interval in the r.h. side

of this condition, there are exactly v + 1 pairs combined into the corresponding intervals

∆T b
p (0, 1), p = 3 − v, 3.) Also, the latter constraint guarantees that ∆τ̄q(i) is independent

of τ̄qγ(p) for ∀i 6= p, ∀p = 3−v, 3. Finally, it is straightforward to argue that the same inde-

pendence of τ̄qγ(p) holds true for t̄
(γ)
1 , t̄

(γ)
2 as well. It is most transparent in the r = v = 0

case where these relative times are fully determined by the positions of the end-points of

the 2 + r − v lines involved into the S(4)−reattachments. In the v = 1 case, this argument

still applies to t̄
(γ)
1 , while the independence of t̄

(γ)
2 is verified by the relation (A.3).

C. Explicit implementation of Ṽ2rv({ai}, {∆τq(k)})

The aim of this appendix to explicitly determine the {al}−dependent parameters which

define the relevant implementation of the pattern (6.2) of the quantity Ṽ2rv(·) entering

eq. (7.6). In compliance with the discussion of subsection 4.2.4, our strategy is to introduce

the required parameters for generic {al}−assignment as the {al}−dependent deformation

of the parameters associated with a particular elementary graph in a given rv−variety of

the elementary diagrams. In the next appendix, we will verify that, after an appropriate

change of the variables ζ̄ and η̄, one can rewrite this quantity in the form matching eq. (7.7).

C.1 The r = v = 0 case

Consider first the a1 = a2 = 0 contribution to the r = v = 0 superposition (7.6) which

is determined by such implementation of Ṽ200({ai}, {∆τq(k)}) that is parameterized by the

j = 2 graph45 2c (when C12 = C13 = C23 = −1), the deformations of which are described

in figure 5b. Defining τ̄k and ∆τ̄k according to the j = 2 eq. (A.1), the {al}−independent

parameters t̄p are determined by the z = 0 variant relations

(−1)a1+z t̄1 = τ̄4− τ̄1 = ∆τ̄1+∆τ̄2+∆τ̄3 , (−1)z t̄2 = τ̄5− τ̄2 = ∆τ̄2+∆τ̄3+∆τ̄4 . (C.1)

with t̄1 − t̄2 + t̄3 = 0, while the convention to fix the labels k = 1, 2, 3 is fixed in subsec-

tion 4.2.4. Correspondingly, it leads to the a1 = z = 0 option of the identification

q(2) = 1, q(1) = 4 , q(3) = 3 ,

α(p) = (−1)zC32 = 1 , −α(1) = (−1)zCp1 = (−1)a1 , p = 2, 3 , (C.2)

where, as it should, the function q(k) is {al}−independent. Also, the ω
(1)
3 = 0 option of the

v = 0 eq. (B.4) implies that the measure of the r = v = 0 representation (7.7) is obtained

through the reidentification: τ̄i → τ̄i for i = 1, 2, while τ̄i → τ̄i−1 for i = 4, 5 so that τ̄3

disappears.

As for the remaining three contributions to the r = v = 0 superposition (7.6), they are

associated with such implementation of the quantity Ṽ200({ai}, {∆τq(k)}) that are param-

eterized by the v = 0 components of the diagrams 2e and 2g obtained through the vertical

45Recall that both the elementary and the effective amplitudes, associated with figures 2a and 2b, are van-

ishing due to the specific implementation of the V
(n)
Uθ(1)(·) → Ṽ

(n)
Uθ(1)(·) option of the G = 1 constraints (4.2).
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reattachments applied to figure 2c. For this purpose, the leftmost or/and rightmost end-

point of the pair of the lines in figure 2c is/are replaced, keeping their time-coordinates

x2(s′1) and x2(s2) intact, from the upper to the lower horizontal side of the rectangle

C. Taking into account that the vertical 1−axis is directed from the upper to the lower

horizontal side of the rectangle ¤, it is formalized by the relations

x1(s′1) = a1R , x1(s2) = a2R , x1(s′2) = x1(s1) = 0 . (C.3)

When a1 + a2 ≥ 1, it parameterizes the three different implementations of Ṽ200(·)

which, being associated with figures 6a-6c, are described by the corresponding

{ak}−implementations of eqs. (C.2) and (C.1), where one is to put z = 0.

Finally, to compute the entire r = v = 0 contribution to the decomposition (1.8), it

remains to include the contribution of such r = v = 0 superposition (7.6) that is associated

with the S(4)−multiplet of the j = 2 elementary graphs specified by the graph in figure

2d. Alternatively, these graphs can be obtained from the previously constructed j = 2

S(4)−multiplet (specified by the graph in figure 2c) via the reflection interchanging the

horizontal sides of the rectangle C. Then, introducing the {∆τ̄k}−assignment according

to the convention of subappendix A.3, one arrives at the r = v = 0 implementation of

eq. (7.6) fixed by the z = 1 option of eqs. (C.1) and (C.2).

C.2 The r = v − 1 = 0 case

Next, consider the a1 = 0 contribution to the r = v − 1 = 0 superposition (7.6) which is

determined by such implementation of Ṽ201({ai}, {∆τq(k)}) that is parameterized by the

v = 1 component of the j = 2 diagram 2e (when C12 = C13 = C23 = −1), the deformations

of which are described in figure 8c. It is geometrically evident that there is the single v = 1

component (assigned with γ = 1) of the latter diagram which is constrained by the p = 2, 3

options of the condition

x2(sp) ∈ [x2(s′1), x
2(s1)] (C.4)

applied to both of the non-horizontal lines.

In this case, introducing τ̄k and ∆τ̄k according to the r = 0 prescription of eqs. (A.4)

and (A.4), the decomposition of the parameters t̄p is determined by the a1 = ã1 = 0 variant

of the relations

(−1)a1+ã1 t̄1 = τ̄5 − τ̄1 = ∆τ̄1 + ∆τ̄2 + ∆τ̄3 + ∆τ̄4 , t̄2 = τ̄3 − τ̄1 = ∆τ̄1 + ∆τ̄2 , (C.5)

with t̄1 − t̄2 + t̄3 = 0, and the convention46 to fix the labels k = 1, 2, 3 is sketched in

subsection 4.2.4. Correspondingly, it yields the a1 = ã1 = 0 option of the identification

q(2) = 3 , q(3) = 2 ,

α(3) = α(2) = C32 = 1 , Cp1 = (−1)a1+ã1 , p = 2, 3 . (C.6)

Also, the ω
(1)
p = 3 − p option of the v = 0 eq. (B.4) implies that the measure of the

r = v − 1 = 0 representation (7.7) is obtained through the reidentification: τ̄1 → τ̄1,

τ̄3 → τ̄2, while τ̄5 → τ̄3 so that τ̄2 and τ̄4 disappear.

46Akin to figure 2c, the convention C23 = −1 implies that x2(s3) < x2(s2).
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8a

8b

8d

8c

8e

8f

Figure 8: Dressed diagrams associated with (a) Z
(1)
101, (b) Z

(2)
101, (c) Z

(1)
201, (d) the representation of

Z
(1)
101 built on the relation (B.7), (e) Z

(2)
101 + Z

(1)
201, (f) Z01.

Then, the remaining three contributions to the r = v − 1 = 0 superposition (7.6) are

associated with such implementation of the quantity Ṽ201({ai}, {∆τq(k)}) that are parame-

terized by the v = 1 components of the diagrams 2f and 2g. In turn, the latter elementary

graphs can be obtained from the v = 1 component of the diagram 2e through the ver-

tical reattachments of the left or/and right end-point of its single horizontal line that is

formalized by eq. (4.4). Together with the already considered w = a1 = 0 case, it gener-

ates the four different implementations of Ṽ201(·) which are described by the corresponding

{ai}−dependent implementations of eqs. (C.5) and (C.6).

C.3 The r = v = 1 case

Consider the a1 = a4 = 0 contribution to the r = v = 1 superposition (7.6) which is

determined by such implementation of Ṽ211({ai}, {∆τq(k)}) that is parameterized by that
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Figure 9: Dressed diagrams associated with (a) Z
(1)
111, (b) Z

(2)
111, (c) Z

(1)
211, (d) the representation of

Z
(1)
111 built on the relation (B.7), (e) Z

(2)
111 + Z

(1)
211, (f) Z11, (h) the reflection-partner of (c), and (g)

the reflection-partner of (b).

component of the Feynman diagram in figure 7e (when C12 = C13 = C23 = −1), where the

upper horizontal line is on the left compared to the lower one. The R̄−1
b −deformations of

this components are depicted in figure 9c.

Defining τ̄k and ∆τ̄k according to the r = 0 prescription of eqs. (A.4) and (A.4), the

decomposition of the parameters t̄p is determined by the a1 = z = 0 relations

(−1)a1+z t̄1 = τ̄6− τ̄2 = ∆τ̄2+∆τ̄3+∆τ̄4+∆τ̄5 , (−1)z t̄2 = τ̄4− τ̄1 = ∆τ̄1+∆τ̄2 +∆τ̄3 ,

(C.7)
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with t̄1 − t̄2 + t̄3 = 0. In turn, the deformations of figure 7e, depicted in figure 9c, are

described by the a1 = z = 0 option of the identification

q(2) = 4 , q(3) = 3 , q(4) = 1 ,

α(p) = (−1)zC32 = 1 , −α(1) = (−1)zCp1 = (−1)a1 , p = 2, 3. (C.8)

Also, the ω
(1)
p = 3−p option of the v = 1 eq. (B.4) implies that the measure of the r = v = 1

representation (7.7) is obtained through the reidentification: τ̄i → τ̄i for i = 1, 2, τ̄4 → τ̄3,

while τ̄6 → τ̄4 so that τ̄3 and τ̄5 disappear.

Concerning the remaining contributions to the r = v = 1 superposition (7.6), they are

associated with the implementation of the quantity Ṽ211({ai}, {∆τq(k)}) parameterized by

the three elementary graphs. Being generated through the vertical reattachments applied

to the leftmost or/and rightmost end-point of figure 7e. These graphs are depicted in figures

7g, 7h and the one obtained from figure 7f via the reflection interchanging the horizontal

sides of C = ¤. It is formalized by the relations

x1(s′1) = a1R , x1(s′4) = a4R , x1(s1) = x1(s4) − R = 0 . (C.9)

that, together with the above a1 = a4 = 0 option, yields the four different implementations

of Ṽ211(·) described by the corresponding {ak}−implementations of eqs. (C.7) and (C.8),

where one is to put z = 0.

Finally, to compute the entire r = v = 1 contribution to the decomposition (1.8), it

remains to include the contribution of such r = v = 1 superposition (7.6) that is associ-

ated with the S(4)−multiplet of the j = 2 elementary graphs specified by such component

of figure 7e when the upper horizontal line is on the right compared to the lower one.

Alternatively, it can be reproduced from the S(4)−multiplet, specified by the so far con-

sidered component of figure 7e, via the reflection interchanging the two vertical sides of

C = ¤. Then, introducing the {∆τ̄q(k)}−assignment according to the convention of sub-

appendix A.3 and performing the auxiliary change of the variables τ̄k → τ̄n+3−k (with

k = 1, . . . , n + 2), by the same token as previously we arrive at the r = v = 1 implementa-

tion of eq. (7.6) fixed by the z = 1 option of eqs. (C.7) and (C.8).

D. Eq. (7.7): S(4)- and reflection-symmetry

As for the R−1
a −deformations, the vertical nature of the reattachments evidently implies

both S(4)− and reflection-symmetries of the parameters which determine the factor (5.5)

(representing the latter deformations in eq. (7.7)). More generally, provided the prescrip-

tion of subappendix A.3, these two symmetries hold true for the algorithm (presented in

appendix A) to introduce the entire set {∆τq(k)}.

Concerning the R̄−1
b −dressing, the situation is a little bit more tricky as it is clear

from the results discussed in the latter appendix. The relevant parameters, defining47 the

implementation (6.2) of Ṽ2rv({ai}, {∆τq(k)}), may be changed by a particular reattachment

47In particular, it applies to the parameters α(i) and y1
i which determine the implementations of the

replacements (5.6).
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or reflection. In consequence, the symmetries of the R̄−1
b −dressing become manifest only

after the appropriate change of the variables.

To explain this point, we first accept the convention that, for a given rv−specification,

the z− and ã1−dependent equations below are implemented according to the assignment

fixed in the previous appendix. Then, a direct inspection (presented below) verifies that the

quantity Ṽ2rv(·) is z−independent. Furthermore, after the corresponding implementation

of the z−independent change of the variables,

ζ̄ −→ (−1)a1+mrv(ã1)ζ̄ , η̄ −→ η̄ , mrv(ã1) = v(1 − r)ã1 , (D.1)

the residual {ai}−dependence (in the r = v−1 = 0 case including, by definition given after

eq. (4.4), the ã1−dependence) of Ṽ2rv(·) arises only due to the corresponding dependence

of the parameters48

e1 = (−1)a1+mrv(ã1)a1 , e2 = a2 , e3 = −a4 , (D.2)

in terms of which one formulates the quantity

Krv((−1)a1+mrv(ã1)ζ̄, η̄, (−1)a1+mrv(ã1)α(1), {al}) = Krv(ζ̄ , η̄, α(1), {el}) (D.3)

where Krv(ζ̄ , η̄, α(1), {al}) = Rv−2−rK̃rv(Rζ̄,Rη̄, {al}) is obtained, from the factor (6.3)

(implicitly depending on α(1) when r = 1) via the change of the variables (7.3), and we

take into account the transformation law

α(1) −→ (−1)a1+mrv(ã1)α(1) , α(k) −→ α(k) , ∀k 6= 1 , (D.4)

that unifies the particular implementations of this transformation which, being given in the

previous appendix, directly follows from definition of α(k) defined by eqs. (3.3) and (3.7).

Justifying the representation (7.7) of Zrv(·), we obtain that both the building

block (7.8) and the exponential ei(η̄t̄1−ζ̄t̄2)ĀC21/θ̄ are manifestly {ei}−independent (with

t̄
(1)
p ≡ t̄p in the j = 2 case at hand). In turn, the relation (D.3) implies eq. (1.12). In

particular, in the v − 1 = r = 0 case, e1 ≡ e1(a1, ã1) depends on the two independent

parameters ã1 and a1 which implies that the four members of the j − 2 = v − 1 = r = 0

S(4)−multiplet are specified by the three values of e1 so that e1 = 0 appears twice (for

a1 = 0, ã1 = 0, 1). In turn, it explains the origin of the factor 2(v−r)(1−|e1|) in eq. (1.12)

which, being equal to unity unless v − 1 = r = 0, assumes the value 2 only when e1 = 0.

To prove the asserted properties of Ṽ2rv(·), let us first verify the independence of the

latter exponential. For this purpose, one is to utilize that, unifying eqs. (C.1), (C.5),

and (C.7), the {ai}−dependence of the splitting (5.4) is defined by the replacement

t1 −→ (−1)a1+krv(z)+mrv(ã1)t1 , tj −→ (−1)krv(z)tj , j = 2, 3, 4 , (D.5)

48Eq. (D.2) unifies the r = v = 0 and r = v = 1 cases (characterized by w = 0) together with the

r = v − 1 = 0 case. In particular, mrv(ã1) = 0 for all 0 ≤ r ≤ v ≤ 1, except for v − 1 = r = 0 when

mrv(ã1) = w.
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where49 krv(z) = ((1−v)+vr)z. Therefore, modulo the sign factors, the splitting is S(4)−

and reflection-invariant. (In particular, the factor (−1)a1+mrv(ã1) arises due to the prescrip-

tion formulated in the footnote after eq. (6.3).) Also, the previous appendix establishes

variables, provided the transformation properties Ckl → (−1)HklCkl of the entries of the

intersection-matrix,

Cp1 −→ (−1)a1+krv(z)+mrv(ã1)Cp1 , ∀p 6= 1 , Cil −→ (−1)krv(z)Cil , ∀i, l 6= 1 , (D.6)

where we take into account the definition (2.11) of Cil combined with the pattern of the

reattachments (formalized by eqs. (C.3), (4.4), and (C.9)). Altogether, one concludes

that (in the quantity (6.2)) the {ai}−dependence of the factor ei(η̄t̄1−ζ̄t̄2)ĀC21/θ̄ indeed

disappears when eq. (D.5) is combined with the change (D.1) of the variables, provided

the transformation law (D.6).

Next, let us turn to the {ai}−dependence of the dressing weight (considered prior to

the change of the variables) composed of the n−v factors (6.3) entering the definition (6.2)

of Ṽ2rv(·). In view of eq. (D.6), this dependence is determined by the transformation

law (D.4) together with the replacement

TCij
(η̄, ζ̄) −→ T

(−1)Hij Cij
(η̄, (−1)a1+mrv(ã1)ζ̄) = η̄ − ζ̄ (D.7)

of the arguments of the combination (6.4). As a result, after the change (D.1) of the

variables, the considered weight assumes the {ai}−independent implementation (7.8).

Finally, to deduce the relation (D.3), all what one needs is to apply the replace-

ments (D.6) and (D.4) together with the change (D.1) of the variables. In particular, in

the r = v = 1 case (characterized by m11(·) = 0), by virtue of eq. (D.4), the transformation

yields e4 = (−1)−2a1a4/α
(1) = −a4, where α(1) = −1 is associated with figures 7a and 7e.

Summarizing, it verifies that the decomposition (1.8), indeed assumes the form fixed by

eq. (7.7).
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